
COMP0120 Numerical Optimization
Project Report

Modified Frank-Wolfe Algorithm for
Solving L2-SVM via the MEB Problem

Author – Jasraj Singh

Contents

1. Classification with SVM 1
1.1. The L2-SVM Optimization Problem . 1

1.1.1. Primal Problem . 2
1.1.2. Dual Problem . 2
1.1.3. Recovering the Primal Optimum . 4
1.1.4. Discussion on the Hyperparameter C . 5

1.2. To Solve the Primal or the Dual? . 5
1.3. Nature of the Optimization Problem . 5

2. Equivalence Between L2-SVM and MEB Problem 6
2.1. MEB Problem . 6
2.2. Normalizing Condition on the Kernel . 7

3. Frank-Wolfe Algorithm for the MEB-SVM Problem 8
3.1. Standard FW Algorithm . 8
3.2. Modified FW Algorithm . 9
3.3. MFW Algorithm for the MEB Problem . 10

3.3.1. Initialization . 11
3.3.2. Optimal Step Sizes . 11
3.3.3. Updating the Coreset . 12
3.3.4. Termination Condition . 12
3.3.5. Convergence Results . 12
3.3.6. Complexity Analysis . 14

4. Experiments 15
4.1. Convergence Results . 15
4.2. Physical Cost . 17
4.3. Classification Performance . 17

A. Support Vector Machines 20
A.1. Problem Description . 20
A.2. Hard-Margin SVM . 20
A.3. The (Soft-Margin) L1-SVM Optimization Problem 21

A.3.1. Primal Problem . 22
A.3.2. Dual Problem . 22

A.4. Kernel SVM . 23
A.4.1. Primal Problem . 23
A.4.2. Dual Problem . 24

B. Pseudocode and Implementation 25

1. Classification with SVM

Assume we are given a finite number, say m ∈ N, of point pairs, (xi, yi) ∈ X × Y , where i ∈
[m] = {1, . . . ,m} and Y = {−1,+1}. Our objective is to find a maximum margin hyperplane
in a Hilbert space, H, that separates the features {Φ (xi) : yi = −1} and {Φ (xi) : yi = +1},
where Φ : X → H is a feature mapping. The benefit of working in a feature space, H, is that
it allows us to capture x-y relationships that cannot be modelled using a linear classifier in the
input space, X .

Hard-Margin Classifiers

A traditional SVM formulation, called hard-margin SVM, assumes that the points are linearly
separable in the feature space, and aims to find an error-free classifier that maximises the
“margin” (distance) of the classification hyperplane/boundary from the nearest points in each
class (see Appendix A.2 for a formal treatment). Intuitively, this can be seen as finding a clas-
sifier robust to observation noise (Smola et al., 2000, Section 1.1.3). Theoretically, a maximum
margin classifier minimizes the PAC bound on the generalization error (Shawe-Taylor et al.,
1998, Theorem 4.17; Herbrich and Graepel, 2000, Theorem 3).

Soft-Margin Classifiers

Linear separability is, in practice, a strong assumption, since it is hard to a-priori guarantee
that in a high dimensional feature space. Moreover, it is also not always favorable to find an
error-free classifier since this can lead to over-fitting – observations are usually noisy and an
error-free classifier can end up fitting to the noise in the data, leading to poor generalization
Smola et al. (2000). To tackle this, regularization techniques balance the maximum margin
objective with a penalty incurred on the mistakes made by the classifier on the training dataset.
This leads to a soft-margin SVM formulation, which can tackle the case of a linearly inseparable
dataset – a situation hard-margin SVMs are not designed for. In Appendix A.3, we present an
L1-SVM. As the name suggests, this removes the error-free classification constraint as in hard-
margin SVM, and adds an L1-regularization to the objective for penalizing misclassifications.

Why an L1 Penalty?

One might ask why we choose to penalise the objective using an L1 penalty, instead of, say, an
Lp penalty, where we replace ξi in the objective with ξpi . There are two reasons for that:

1. Quadratic programming (QP) problem: With p = 1, the primal problem is particu-
larly convenient – it can be formulated as a QP for which we have dedicated optimization
routines.

2. Robustness guarantees: With p = 1, our estimator enjoys robustness to outliers
(Scholkopf and Smola, 2001, Proposition 7.7).

1.1. The L2-SVM Optimization Problem

Several works (Lee and Mangasarian, 2001a,b; Mangasarian and Musicant, 2000) have formu-
lated the SVM problem with L2 regularization, i.e. p = 2. This comes at the cost of losing
robustness guarantees we have for L1-SVM. However, in practice, L1-SVM and L2-SVM have

1

similar classification accuracy (Lee and Mangasarian, 2001b; Tsang et al., 2005). On the plus
side, the L2-SVM formulation opens up a suite of algorithms that can speed up the optimization
process. Particularly, as we will discuss in Section 2, L2-SVM are equivalent to the Minimal
Enclosing Ball (MEB) problem (Tsang et al., 2005), for which we can find a (1 + ϵ)-approximate
solution in O (1/ϵ) steps (Bădoiu and Clarkson, 2008).

1.1.1. Primal Problem

The L2-SVM was proposed by Lee and Mangasarian (2001b):

min
w,b,ξ,ρ

1

2

∥w∥2H + b2 + C
∑
i∈[m]

ξ2i

− ρ

subject to yi (⟨Φ (xi) ,w⟩H + b) ≥ ρ− ξi, ∀i ∈ [m]

(1)

Comparing this primal problem with the L1-SVM primal (36), we note three things:

• The objective includes b, which induces strong convexity with little to no effect to the
problem (Mangasarian and Musicant, 1999, Proposition 2.1).

• We have introduced squared slack variables, which removes the need for the non-negativity
constraint (Mangasarian and Musicant, 2001, Equation 7). This can be interpreted as
follows: since the objective is an even function of ξ∗, an optimum ξ∗i < 0 simultaneously
implies another feasible optimum ξ∗ > 0. Hence, the constraint ξ∗ > 0 is implicit.

• Finally, the dependence on the margin width is made explicit through ρ.

Furthermore, we make the following observations about the problem:

• The objective function is convex in w, b, ξ and ρ, and its domain D = H×R ×Rm ×R
is convex.

• The constraints ρ− ξi − yi (⟨Φ (xi) ,w⟩H + b) ≤ 0 are linear in w, b, ξ and ρ.

This tells us that we have a convex problem. Since the constraints are affine, Slater’s conditions
are satisfied trivially and we conclude that strong duality holds.

1.1.2. Dual Problem

The Lagrangian of (1) is given by

L (w, b, ξ, ρ,α) =
1

2

∥w∥2H + b2 + C
∑
i∈[m]

ξ2i

− ρ+
∑
i∈[m]

αi (ρ− ξi − yi (⟨Φ (xi) ,w⟩H + b))

2

with dual variable constraints αi ≥ 0, ∀i ∈ [m]. Our dual objective is given by

g (α) = inf
w,b,ξ,ρ

L (w, b, ξ, ρ,α)

= inf
w

1

2
∥w∥2H −

∑
i∈[m]

αiyi ⟨Φ (xi) ,w⟩H

+ inf
b

1

2
b2 − b

∑
i∈[m]

αiyi


+
∑
i∈[m]

inf
ξi

(
C

2
ξ2i − ξiαi

)
+ inf

ρ
ρ

∑
i∈[m]

αi − 1


The first term is the unique minimum of a 1-strongly convex function, which we can derive by
setting the gradient with respect to w to 0:

∂

∂w

1

2
∥w∥2H −

∑
i∈[m]

αiyi ⟨Φ (xi) ,w⟩H

 = w −
∑
i∈[m]

αiyiΦ (xi) = 0 =⇒ w =
∑
i∈[m]

αiyiΦ (xi)

(2)
which gives

inf
w

1

2
∥w∥2H −

∑
i∈[m]

αiyi ⟨Φ (xi) ,w⟩H

 = −1

2

∥∥∥∥∥∥
∑
i∈[m]

αiyiΦ (xi)

∥∥∥∥∥∥
2

Similarly, for the second term,

inf
b

1

2
b2 − b

∑
i∈[m]

αiyi

 = −1

2

∑
i∈[m]

αiyi

2

at bmin =
∑
i∈[m]

αiyi (3)

and the third term,∑
i∈[m]

inf
ξi

(
C

2
ξ2i − αiξi

)
= − 1

2C

∑
i∈[m]

α2
i at ξmin

i =
αi

C
, ∀i ∈ [m] (4)

As for the final term, it takes the infimum of an affine functions of ρ. Hence, it is equal to −∞
if the sum of Lagrange dual variables, αi, is non-zero. In summary,

g (α) =

−1
2

∥∥∥∑i∈[m] αiyiΦ (xi)
∥∥∥2 − 1

2

(∑
i∈[m] αiyi

)2
− 1

2C

∑
i∈[m] α

2
i , αi ≥ 0 and ∥α∥1 = 1

−∞, otherwise

This gives us our dual problem,

max
α

− 1

2

∑
i,j∈[m]

αiαj

(
yiyj (k (xi,xj) + 1) +

δij
C

)
subject to

∑
i∈[m]

αi = 1 and αi ≥ 0, ∀i ∈ [m]

where k (·, ·) : X ×X → R is the kernel induced by the feature map Φ, and δ is the Kronecker-

3

delta function. For the purpose of optimization with respect to α, the factor of 1/2 in the
objective is irrelevant, so we drop it to get the following equivalent optimization problem:

max
α

−
∑

i,j∈[m]

αiαj

(
yiyj (k (xi,xj) + 1) +

δij
C

)
subject to

∑
i∈[m]

αi = 1 and αi ≥ 0, ∀i ∈ [m]
(5)

1.1.3. Recovering the Primal Optimum

Since Slater’s conditions are satisfied, the KKT conditions are necessary and sufficient for
optimality. From Equation 2, Equation 3 and Equation 4, at the optimum, we have

w∗ =
∑
i∈[m]

α∗
i yiΦ (xi)

b∗ =
∑
i∈[m]

αiyi

ξ∗i =
α∗
i

C

(6)

Hence, we can solve the dual problem to find α∗, and then use Equation 6 to recover the primal
optimum, w∗, b∗ and ξ∗. Finally, the optimum margin width ρ∗ can be recovered by noting
that we have 0 duality gap.

Our corresponding classifier is given by

f (·;w∗, b∗) = sign (⟨w∗,Φ (·)⟩+ b∗) = sign

∑
i∈[m]

α∗
i yi (k (xi, ·) + 1)

 = f (·;α∗) (7)

This gives us two important insights:

1. Dual optimum is sufficient for making predictions: We don’t need the primal
optimum for defining our classifier at all. We can simply solve the dual problem (5)
and use the dual optimum, α∗, to define f (·;w∗; b∗). This is convenient since we can
now use complex non-linear kernels with, possibly, infinite dimensional associated feature
mappings.

2. We can discard the non-SVs: The classifier only depends on inputs xi with corre-
sponding dual variables α∗

i ̸= 0; we call these points the support vectors (SV) and they
usually form a small subset of the all the points. Once the SVM is trained, we can dis-
card points with α∗

i = 0 (the non-SVs) since they don’t contribute to the final classifier
f (·;α∗). From complementary slackness, we know that these points are the ones that
strictly satisfy the primal inequality constraints (1),

yi (⟨Φ (xi) ,w⟩H + b) > ρ− ξi

In other words, the points lying on the correct side of the hyperplane corresponding to
yi (see Figure 6a) can be discarded at inference time.

4

1.1.4. Discussion on the Hyperparameter C

Note that as we increase C, the penalty incurred on incorrect classifications increases. Hence,
in the case of linear separability, for sufficiently large C, the soft-margin classifier reduces to a
hard-margin classifier. In the case of linear inseparability, C balances under-fitting (not learning
the data well enough) and over-fitting (fitting too close to the data, ignoring observation
noise and outliers). Both extremes – C → 0 and C → ∞ – negatively effect generalization,
which makes tuning C an important design choice. Another important consideration is that,
practically, the convergence time scales exponentially for dramatically high values (> 10) of C
even with good optimization routines (Sentelle et al., 2008, Figure 1).

1.2. To Solve the Primal or the Dual?

Since both the primal and the dual are convex problems, an important question that rises is
which one we should solve. To answer this, we note the following:

1. Faster learning: The primal problem (1) optimizes over the weight vectors w ∈ H, the
threshold b ∈ R, the margin width ρ ∈ R and the slack variables ξ ∈ Rm. On the other
hand, the dual optimizes over α ∈ Rm. So, when the dimensionality of the feature space
is much larger than the number of data points, solving the dual will be a lot faster.

2. Kernel trick: Resorting to optimizing the dual problem allows us to use the kernel trick,
adding flexibility to our model – regardless of our choice of kernel, the dimensionality
of the problem remains the same, depending only on the size of the dataset. This also
allows us to use infinite dimensional feature mappings, that can model complex decision
boundaries, without over-fitting (Frieß et al., 1998, Theorem 2.1).

3. Faster inference: If we solve the primal, our classifier will explicitly depend on the
primal optimum w∗, b∗:

f (x;w∗, b∗) = sign (⟨w∗,Φ (x)⟩H + b∗)

Calculating the inner product can be prohibitively expensive if the feature mapping is
high dimensional. This also eliminates the option of using infinite dimensional feature
mappings. Solving the dual, on the other hand, allows the classifier to only implicitly
depend on w∗ (7) – we only need to compute the kernel (typically a constant time
operation) between the input and the support vectors, making inference far more efficient.

1.3. Nature of the Optimization Problem

Note that (5) is clearly a QP – we have a quadratic obejctive in α and linear constraints. This
opens us up to a range of popular algorithms designed for solving QP; see Pang (1983) for
a review. That being said, with a naive implementation, the complexity of this optimization
problem is prohibitive for large scale problems with O (m2) memory requirement and O (m3)
runtime complexity. Therefore, we are going to pay special attention to these asymptotic
complexities when justifying our choice of optimization algorithm, ensuring that it is scalable
with the number of data points, m.

5

2. Equivalence Between L2-SVM and MEB Problem

In this section, we first introduce the Minimum Enclosing Ball (MEB) problem, and then show
how the L2-SVM dual Equation 5 is equivalent to the MEB dual under mild conditions on the
kernel k̃ induced by the feature mapping Φ̃. This equivalence was first established in Tsang
et al. (2005) and then generalized in Tsang et al. (2006).

2.1. MEB Problem

As the name suggests, the problem deals with finding a closed ball, B (c, r), of minimum radius
that encloses a set of given points. Formally, consider a set of points {x̃i}i∈[m] ⊂ X̃ and a
feature mapping Φ̃ : X̃ → H̃. The solution of the MEB problem is the closed ball B (c∗, r∗)
that is a solution to the following optimization problem:

min
c,γ

γ

subject to
∥∥∥Φ̃ (x̃i)− c

∥∥∥2 ≤ γ, ∀i ∈ [m]
(8)

where γ = r2 and the constraint γ ≥ 0 is implicit since norms are positive definite. The
Lagrangian of this MEB problem is

L (c, γ,α) = γ +
∑
i∈[m]

αi

(∥∥∥Φ̃ (x̃i)− c
∥∥∥2 − γ

)

where we have introduced the Lagrange multipliers α ∈ Rm
+ =

(
R+

)m. The dual problem is
given by

g (c, γ) = inf
c,γ

L (c, γ,α)

= inf
γ
γ

1−
∑
i∈[m]

αi

+ inf
c

∑
i∈[m]

αi

∥∥∥Φ̃ (x̃i)− c
∥∥∥2

The first term is a linear function of γ – it diverges to −∞ when ∥α∥1 ̸= 1 and is 0 otherwise.
The second term is convex quadratic function of c and can be minimized by setting the partial
derivative to 0:

0 =
∂

∂c

∑
i∈[m]

αi

∥∥∥Φ̃ (x̃i)− c
∥∥∥2 = ∑

i∈[m]

2αi

(
Φ̃ (x̃i)− c

)
=⇒ c =

∑
i∈[m] αiΦ̃ (x̃i)∑

i∈[m] αi

(9)

This gives us the Lagrange dual function (Yildirim, 2008, Section 2):

g (α) =

{∑
i∈[m] αik̃ (x̃i, x̃i)−

∑
i,j∈[m] αiαj k̃ (x̃i, x̃j) , ∥α∥1 = 1 and αi ≥ 0, ∀i ∈ [m]

−∞, otherwise

6

Hence, the dual problem is given as follows:

max
α

f (α) =
∑
i∈[m]

αik̃ (x̃i, x̃i)−
∑

i,j∈[m]

αiαj k̃ (x̃i, x̃j)

subject to
∑
i∈[m]

α = 1 and αi ≥ 0, ∀i ∈ [m]
(10)

This is a concave maximization problem with linear constraints. Hence, Slater’s conditions are
trivially satisfied and strong duality holds. Moreover, the KKT conditions are necessary and
sufficient at the optimum (c∗, γ∗,α∗). Setting the derivative of the Lagrangian with respect to
c to 0, we can recover the primal optimum from the dual optimum α∗ using (9) with the dual
constraints:

c∗ =
∑
i∈[m]

α∗
i Φ̃ (x̃i) (11)

Finally, since the duality gap is 0, we can recover the radius of the MEB:

γ∗ = f (α∗) =
∑
i∈[m]

α∗
i k̃ (x̃i, x̃i)−

∑
i,j∈[m]

α∗
iα

∗
j k̃ (x̃i, x̃j) (12)

2.2. Normalizing Condition on the Kernel

Comparing the MEB dual (10) with L2-SVM (5), we see that the two differ only in the linear
term present in the former. In order to establish an equivalence between the two, we restrict
our choice of kernel such that it satisfies the following normalization condition: k̃ (x̃, x̃) = ∆̃2,
∀x̃ ∈ X̃ . That is, all the mappings lie on a sphere in the feature space H̃. This condition is
fairly unrestrictive, and is satisfied by several choice of kernels in practice (Tsang et al., 2005):

1. Isotropic kernels: Kernels of the form k (xi,xj) = k′ (∥xi − xj∥), e.g. the Gaussian
kernel

2. Dot product kernel: Kernels of the form k (xi,xj) = k′ (⟨xi,xj⟩), e.g. polynomial
kernels, with normalized inputs

3. Normalized kernels: Kernels of the form k (xi,xj) =
k′(xi,xj)√

k′(xi,xi)k′(xj ,xj)

With the normalizing condition on the MEB kernel k̃, since
∑

i∈[m] αi = 1, we can drop the
linear term in (10) and obtain an equivalence with (5) by setting X̃ = X × Y and

k̃ ((xi, yi) , (xj, yj)) = yiyjk (xi,xj) + yiyj +
δij
C

(13)

where k is the L2-SVM kernel. We note two things here:

1. First, that k̃ : X̃ × X̃ → R in this form is a kernel with the associated feature map
Φ : X̃ → H̃ = H× R × Rm defined as

Φ̃ (x, y) =

yiΦ (x)
yi
1√
C
ei


7

where Φ : X̃ → H is the feature map associated with k and ei ∈ Rm is the ith canonical
basis vector of Rm, i.e. (ei)j = δij. Note here that as the (supervised) classification prob-
lem is turned into an (unsupervised) MEB problem, the label information yi is encoded
in the feature map Φ̃ (xi, yi).

2. Second, k̃ satisfies the normalization condition if k satisfies it with k (x,x) = ∆2, since

∆̃2 = k̃ (x,x) = k (x,x) + 1 +
1

C
= ∆2 + 1 +

1

C
> 0 (14)

Tsang et al. (2005) established this equivalence between the L2-SVM and the MEB problem to
apply the core-set approach introduced in Bădoiu and Clarkson (2008) for the latter problem.
Instead, we use a modified Frank-Wolfe (FW) algorithm to solve the MEB problem. This has
previously been shown to be a lot faster than the core-set approach (Frandi et al., 2013, Table
2). Several speed-ups for FW-based algorithms have been proposed since then, e.g. Frandi
et al. (2015), but we don’t explore these accelerations in this project.

3. Frank-Wolfe Algorithm for the MEB-SVM Problem

The Frank-Wolfe (FW) algorithm was originally proposed in Frank and Wolfe (1956) as a
method for tackling problems of the form

max
α∈Σ

f (α)

where f : Rm → R is a continuously differentiable concave function and Σ ⊂ Rm is a convex
polyhedron. Clearly (10), and equivalently (5), are problems in this form with f a concave
quadratic function and Σ equal to the standard simplex in Rm. See (Frandi et al., 2013,
Sections 4.1 and 4.2) for an overview of the FW algorithm.

3.1. Standard FW Algorithm

In simple terms, the FW algorithm starts at a feasible point α1 ∈ Σ, and in each step k ∈ N,
given the current iterate αk, the algorithm finds a point uk ∈ Σ that maximizes the 1st order
Taylor expansion of f at αk:

uk = argmax
u∈Σ

(
f (αk) + (u−αk)

T ∇f (αk)
)
= argmax

u∈Σ
(u−αk)

T ∇f (αk) (15)

This tells us that (uk −αk) is an ascent direction unless αk is a stationary point of f . Then, we
simply perform a line search on the line segment connecting αk and uk to set the next iterate
αk+1. Since αk,uk ∈ Σ and Σ is convex, their convex combination αk+1 is in Σ. Moreover,
since in each step we are optimizing a linear function in a bounded polyhedron, i.e. a linear
programming (LP) problem, uk is always a vertex of Σ. When optimizing over the standard
simplex, as in (5) and (10), we have

uk = argmax
u∈Σ

(u−αk)
T ∇f (αk) = argmax

u∈Σ
uT∇f (αk) = ei∗ (16)

where i∗ = argmaxi∈[m] (∇f (αk))i, i.e. we move in the direction given by the largest compo-
nent of the gradient at the current iterate (Yildirim, 2008).

8

While this procedure can be proved to converge globally, the convergence is slow near the
optimum α∗ if it lies on the boundary of the feasible set Σ. This is because the ascent direction
uk −αk starts becoming perpendicular to the gradient ∇f (αk), and the trajectory exhibits a
zig-zagging behavior (GuéLat and Marcotte, 1986). For this reason, overall, the convergence
rate is sublinear. Particularly, this is the case for the L2-SVM and MEB problems since the
feasible set is its own boundary, i.e. Σ = ∂Σ when Σ is a simplex.

3.2. Modified FW Algorithm

Wolfe (1970) introduced a modification to the FW algorithm which quantifiably improves the
convergence rate and thus, the number of iterations needed to meet stopping conditions. This
modification involves exploring not just in the direction of the maximizer uk of the linearization
(see Equation 15), but also “away” from the minimizer vk of the linearization. When optimizing
over the standard simplex, as in (5) and (10), we have

vk = argmin
v∈Σ

(v −αk)
T ∇f (αk) = argmin

v∈Σ
vT∇f (αk) = ej̃

where j̃ = argminj∈[m] (∇f (αk))j, i.e. we move “away” in the direction given by the smallest
component of the gradient at the current iterate (Yildirim, 2008). Note here that if (αk)j̃ = 0,
then we can’t take a step in the direction away from vk = ej̃ since we can’t have (αk+1)j̃ < 0.
In fact, if (αk)j = 0, then (vk)j = 0 for us to be able to take a non-zero step away from vk.
Therefore, we constrain the components of v to be 0 when the corresponding component of α
is 0:

vk = argmin
v∈Σ

vj=0 if (αk)j=0

vT∇f (αk) = ej∗ (17)

where j∗ = argminj:(αk)j>0 (∇f (αk))j. We call Ik =
{
j ∈ [m] : (αk)j > 0

}
the coreset at

iteration k.

While we are ensured that performing a line search on the line segment connecting αk and
uk will yield a point which lies in Σ (because of its convexity), the same is not true moving
away from vk. Therefore, our line search needs to be explicitly restricted to Σ. Since vk

is of the form ej∗ , we note that moving away from it can only violate the dual constraint
on αj∗ . Therefore, the step sizes λA

k need to be restricted to
[
0, λ̄
]
, where λ̄ is such that

(αk)j∗ + λ̄
(
(αk)j∗ − 1

)
= 0, i.e.

λ̄ =
(αk)j∗

1− (αk)j∗
(18)

The procedure can be summarized in the following steps:

1. Find uk ∈ Σ according to Equation 16 and compute

dFW = (uk −αk)
T ∇f (αk)

2. Find vk ∈ Σ according to Equation 17 and compute

dA = (αk − vk)
T ∇f (αk)

9

• If dFW ≥ dA:

3.1. Perform a line search to find

λFW
k = argmax

λ∈[0,1]
f (αk + λ (uk −αk)) (19)

4.1. Update the iterates as
αk+1 = αk + λFW

k (uk −αk) (20)

• If dFW < dA:

3.2. Set λ̄ according to Equation 18 and perform a line search to find

λA
k = argmax

λ∈[0,λ̄]
f (αk + λ (αk − vk)) (21)

4.2. Update the iterates as
αk+1 = αk + λA

k (αk − vk) (22)

3.3. MFW Algorithm for the MEB Problem

Equation 16 and Equation 17 require the gradient of the objective with respect to the opti-
mization variables. With the MEB dual problem (10), this corresponds to

(∇f (αk))i = k̃ (x̃i, x̃i)− 2
∑
j∈[m]

(αk)j k̃ (x̃i, x̃j) = k̃ (x̃i, x̃i)− 2
〈
Φ̃ (x̃i) , ck

〉
H

(23)

where ck is the current estimate for the center of the MEB, as in Equation 11:

ck =
∑
i∈[m]

(αk)i Φ̃ (x̃i) (24)

Assuming k̃ satisfies the normalizing condition, we obtain uk = ei∗ , where

i∗ = argmax
i∈[m]

(∇f (αk))i = argmax
i∈[m]

∥∥∥Φ̃ (x̃i)− ck

∥∥∥2 = argmin
i∈[m]

∑
j∈Ik

(αk)j k̃ (x̃i, x̃j) (25)

The second equality here gives us an intuition for what FW does for the MEB problem: in
each iteration, we find the mapping Φ̃ (x̃i) farthest from the current estimate of the center ck,
and move the center in its direction.

Similarly, we can compute vk = ej∗ following what we did in Equation 25:

j∗ = argmin
i∈Ik

(∇f (αk))i = argmin
i∈Ik

∥∥∥Φ̃ (x̃i)− ck

∥∥∥2 = argmax
i∈Ik

∑
j∈Ik

(αk)j k̃ (x̃i, x̃j) (26)

That is, the “away” steps can be interpreted as finding the feature mapping Φ̃ (x̃j∗) closest to
the current estimate of the center ck and moving away from it. This has a geometric intuition
as well: using complementary slackness in (8), we know that the components of the optimum
α∗ are non-zero if and only if the corresponding features are on the boundary of the optimum

10

MEB. Hence, it makes sense to remove the points near the center from the model. This explains
the naming of the coreset Ik.

3.3.1. Initialization

We follow the initialization scheme laid out in Kumar et al. (2004) for MEBs, which is also
followed in Tsang et al. (2005); Frandi et al. (2013) for SVMs. Specifically, we start with an
arbitrary point x̃s and find the farthest point x̃j from it. Then, we find the farthest point
x̃k from x̃j. The initial coreset is then set to I0 = {j, k}. The center c0 is given by the
center of Φ̃ (x̃j) and Φ̃ (x̃k), i.e. we have the initialization for the dual variable components,
(α0)j = (α0)k =

1
2

and 0 otherwise. The initial squared-radius-estimate is given by

γ0 =

(
1

2

∥∥∥Φ̃ (x̃j)− Φ̃ (x̃k)
∥∥∥)2

=
1

4

(
2∆̃2 − 2k̃ (x̃j, x̃k)

)
=

1

2

(
∆2 + 2 +

1

C
+ k (xj,xk)

)
where we use Equation 13 and Equation 14 to assert the last equality. To add representative-
ness, we can condition to choose x̃j and x̃k from different classes. Choosing points xj and xk

such that the initial radius is maximized then corresponds to selecting the closest pair of points,
one from each of the two classes. This heuristic was also used for initialization of DirectSVM
(Roobaert et al., 2006) and SimpleSVM (Vishwanathan et al., 2003).

3.3.2. Optimal Step Sizes

For the optimal step size in Equation 19, we first observe that f (αk + λ (uk −αk)) is a
quadratic expression in λ. Hence, we can analytically maximize it. To this end, since we can
only move along the direction uk − αk, we set the directional derivative at αk + λ (uk −αk)
to 0:

0 = ∇uk−αk
f (αk + λ (uk −αk))

= (uk −αk)
T ∇f (αk + λ (uk −αk))

=
∑
i∈[m]

(uk −αk)i

k̃ (x̃i, x̃i)− 2
∑
j∈[m]

(
(αk)j + λ (uk −αk)j

)
k̃ (x̃i, x̃j)

 (27)

=⇒ 0 =
∑
i∈[m]

∑
j∈[m]

(uk −αk)i

(
(αk)j + λ (uk −αk)j

)
k̃ (x̃i, x̃j) (28)

= (1− 2λ)
〈
Φ̃ (x̃i∗) , ck

〉
H
+ (1− λ)

(
f (αk)− ∆̃2

)
+ λ∆̃2 (29)

where we substitute Equation 24 to get Equation 27, use the normalizing condition for k̃ along
with the fact that the entries of uk and αk sum to 1 to get Equation 28, use (uk)j = δi∗j to
get Equation 29. Rearranging the terms gives us the optimal step size,

λFW
k =

1

2

1− γk∥∥∥Φ̃ (x̃i∗)− ck

∥∥∥2
 =

1

2

(
1− γk

2∆̃2 − 2
∑

i∈[m] (αk)i k̃ (x̃i, x̃i∗)

)
(30)

where γk = f (αk) is our current estimate of the squared-radius of the MEB, as in Equation 12.

11

Similarly, we can show that the best step in the “away” direction is

λ̃A
k =

1

2

 γk∥∥∥Φ̃ (x̃j∗)− ck

∥∥∥2 − 1

 =
1

2

(
γk

2∆̃2 − 2
∑

i∈[m] (αk)i k̃ (x̃i, x̃j∗)
− 1

)

However, to keep satisfying the dual constraint, we clip this best value using Equation 18:

λA
k = min

{
λ̃A
k , λ̄

}
(31)

3.3.3. Updating the Coreset

If we take the standard FW step (see Equation 20), we can update the coreset as Ik+1 =
Ik ∪ {i∗}, i.e. if i∗ is not currently in the coreset, and we take a step in its direction, then we
add it to the set. Else, the coreset remains unchanged.

We recall that in an “away” step, taking a full-step (with step size λ̄) sets (αk+1)j∗ = 0
(see Equation 22). Hence, taking a full-step in the “away” direction implies dropping the
corresponding example from the coreset, Ik+1 = Ik \ {j∗}. If we don’t take a full-step, the
coreset remains unchanged.

3.3.4. Termination Condition

Let η is the total number of iterations in our approximate algorithm; γη will be the cor-
responding dual objective (approximate MEB radius-squared) returned. Let γ∗ be the the
optimal objective. We say that the algorithm has an approximation ratio ρ (m) for an input
size m if

max

{
γη
γ∗ ,

γ∗

γη

}
= ρ (m) ≥ 1

Intuitively, this ratio measures how bad the approximate solution is compared with the optimal
solution. A large (small) approximation ratio means the solution is much worse than (more or
less the same as) the optimal solution. If the ratio does not depend on m, we may just write
ρ and call the algorithm an ρ-approximation algorithm.

(Yildirim, 2008, Theorem 4.1) states that if the MFW algorithm with the termination condition
1 + δk ≤ (1 + ϵ)2 is applied to the MEB problem, then γη is a (1 + ϵ)2-approximation to γ∗.
In other words, the MEB radius is approximated within a (1 + ϵ) factor. This termination
condition has also been used in Bădoiu and Clarkson (2008); Tsang et al. (2005), albeit for a
different optimization algorithm. We use this in our implementation as well.

3.3.5. Convergence Results

Dual Iterates

For constrained optimization of a C1 (S) function over a polyhedron S, (GuéLat and Marcotte,
1986, Theorem 4) states that MFW is globally convergent under a mild condition:

Theorem 1 (Global Convergence). Let {αk} be a sequence generated by MFW, with α0 ∈ S.
If ∇f is Lipschitz continuous on S, then limk→∞ f (αk) = f (α∗).

12

We start by noting that for the MEB problem, ∇f is a linear function (see Equation 23):
∇f (α) = b− 2Kα. Hence, it is trivially Lipschitz continuous:

∥∇f (α1)−∇f (α2)∥2 = 4 ∥K (α1 −α2)∥2 ≤ 4 ∥K∥2 ∥α1 −α2∥2

where b =
[
k̃ (x̃1, x̃1) . . . k̃ (x̃m, x̃m)

]
∈ Rm, K ∈ Rm×m is the MEB kernel matrix, [K]ij =

k̃ (x̃i, x̃j) and ∥K∥2 denotes the L2 matrix norm. Moreover, our MFW algorithm starts in S
and S is a simplex – a special kind of polyhedron. Hence, the conditions of Theorem 1 are
satisfied, and we conclude that the MFW algorithm for the MEB problem converges globally.

Dual Objective

(Wolfe, 1970, Theorem 5) initially outlined the linear convergence of MFW at maximizing a
concave function over a polytope, given that ∇f is Lipschitz continuous, f is strongly concave,
and strict complementarity is observed. Ahipasaoglu et al. (2008) confirmed the linear conver-
gence of a similar algorithm over the unit simplex, albeit under slightly altered assumptions.
Unfortunately, these earlier findings do not directly apply to our situation because both sets
of conditions require that the optimal solution is unique, a condition not generally met by the
dual of the MEB problem Yildirim (2008).

Staying consistent with Yildirim (2008), we will refer to the MFW iterations using standard
FW step as a plus-iteration and those using an “away” step as a minus-iteration. The following
lemma is from (Yildirim, 2008, Lemma 4.1) which corresponds to the MFW algorithm for the
MEB problem:

Lemma 1 (Increasing Dual Objective). At each plus- or minus-iteration,

γk+1 ≥ γk

(
1 +

δ2k
4 (1 + δk)

)
where γk = f (αk), δk = max

{
δ+k , δ

−
k

}
and

δ+k = max
i∈[m]

∥Φ̃ (x̃i)− ck∥2

γk
− 1 (32)

δ−k = 1−min
i∈Ik

∥Φ̃ (x̃i)− ck∥2

γk
(33)

Note that δk ≥ 0 if at least one of the following is true:

• δ+k ≥ 0, or equivalently maxi∈[m] ∥Φ̃ (x̃i) − ck∥2 ≥ γk, i.e. there is at least one mapping
not in the current MEB, B

(
ck,
√
γk
)
; δ+k is the smallest factor by which the current ball

should be expanded so that their are no points outside it.

• δ−k ≥ 0, or equivalently γk ≥ mini∈Ik ∥Φ̃ (x̃i) − ck∥2, i.e. a coreset point is not on the
boundary of the current MEB; δ−k is the smallest factor by which the current ball should
be shrunk so that their are no coreset vectors in its interior.

Now, since
min
i∈Ik
∥Φ̃ (x̃i)− ck∥2 ≤ max

i∈Ik
∥Φ̃ (x̃i)− ck∥2 ≤ max

i∈[m]
∥Φ̃ (x̃i)− ck∥2

13

one of the two conditions above must be satisfied. Hence, δk ≥ 0, and from Lemma 1, the
sequence {γk}k∈N is non-decreasing.

Now, we present (Yildirim, 2008, Theorem 4.2), which concludes the (asymptotic) linear con-
vergence of the dual objective, f :

Theorem 2 (Asymptotically Linear Convergence). Given S =
{
Φ̃ (x̃i) : i ∈ [m]

}
, the MFW

algorithm applied to estimate the MEB of S computes iterates αk such that f (α∗)− f (αk) is
non-increasing. Asymptotically, we have

f (α∗)− f (αk+1)

f (α∗)− f (αk)
≤M ≤ 1− 1

36mld2S

where l is a positive constant and dS is the diameter of S.

Theorem 2 tells us that after a sufficient number of iterations, the dual objective f converges
(locally) linearly to the optimal, and the exact rate is determined by the number of data points
m; the rate is independent of the dimension of the feature space H̃. Finally, note here that a
bound on the number of iterations would depend on S as it is not known a priori when the
linear convergence will kick in.

3.3.6. Complexity Analysis

Algorithm 1 details MFW algorithm for the MEB problem (Frandi et al., 2013, Algorithm 3).
We note that computational bottlenecks are finding the search directions in each step, with a
complexity of O (m |Ik|) = O (m2) incurred upon multiplying the m× |Ik| kernel matrix with
the |Ik| × 1 dual variable components corresponding to the coreset. In practice, the coreset
is a small fraction of the total number of points (Kumar et al., 2004), meaning that we save
a lot of runtime by using only the dual components for computations. As discussed earlier,
the linear convergence is only asymptotic. As such, we cannot guarantee the total number of
iterations. However, once linear convergence kicks in, the number of iterations is of the order
O (log ϵ/ logM).

As for the memory complexity, we store the kernel evaluations of the coreset vectors with all
the points. Hence, the memory needed is of the order O (m ·maxk |Ik|) = O (m2). Again,
the small size of the coreset allows us to optimize the SVM efficiently. An alternate analysis
can be performed using the complexity of the size of the coreset at convergence: Iη = O (1/ϵ)
(Yildirim, 2008, Theorem 4.1). This gives O (m ·maxk |Ik|) = O (m/ϵ).

14

4. Experiments

(a) Input Dataset (b) L2-SVM Decision Function

Figure 1: 2-Circles Dataset. Blue color corresponds to the label −1 and green is for label +1.

In this section, we perform classification on a 2-circles dataset, as in Figure 1a, with a total
of m = 300 points. Clearly, this dataset is not linearly separable. For that reason, we use
the Gaussian kernel with the scale parameter γ2 = 2−1 to perform classification in a higher
dimensional feature space:

k (x1,x2) = e−γ2∥x1−x2∥2

In the L2-SVM formulation, C is set to 103. These hyper-parameters were selected over a
logarithmic grid [2−6, 26] × [10−3, 106], using cross validation. For the stopping condition, we
set ϵ = 10−6, as in (Frandi et al., 2013). The algorithm is trained with a random 80% of the
complete dataset, and then tested on the rest 20%. The learnt classification function is shown
in Figure 1b. Listing 3 contains the Python implementation of Algorithm 1, with the associated
SVM Kernel and MEB Kernel implementations in Listing 1 and Listing 2, respectively.

4.1. Convergence Results

Figure 2: Dual Objective Convergence

15

Figure 2 shows that the dual objective monotonically decreases, agreeing with Lemma 1. More-
over, it converges linearly, as we expected from Theorem 2, but near the optimum, the rate
of convergence is slow. This is in line with the limitations of FW we noted earlier. It seems
like the modified FW algorithm doesn’t entirely fix the limitations of standard FW near the
feasible set’s boundary.

Figure 3: Dual Iterates Convergence

Figure 3 shows that the dual iterates converge linearly to the optimum as well, and while the
convergence is slow at the beginning, it gets faster as the optimization progresses.

(a) Step Sizes (b) Coreset Sizes

Figure 4

Figure 4a shows that the step sizes became smaller as we optimized. Furthermore, only in the
last iteration, we took an “away” step (inidcated by a negative step size). This also explains
why the slow convergence of FW near the optimum was not fixed despite the modification –
the “away” steps were not chosen enough times. Figure 4b shows that the coreset size only
increased over the optimization routine, meaning we never added any points to the coreset that
are not a part of the MEB’s coreset. Importantly, note that we have at most 14 points in the
coreset, much smaller than the total number of 240 training points we used to fit the model,
making this a lot more efficient than a naive implementation.

16

4.2. Physical Cost

The most expensive data structure in our problem is the kernel matrix storing the MEB kernel
evaluations between the coreset vectors and all the training inputs. At 64-bit precision, the
largest size this (NumPy) matrix gets to is 26.880 KBs, at shape (240, 14). From the initialization
to the end of the optimization process, the algorithm takes nearly 16 ms. Even with m = 3, 000
data points, the algorithm takes only around 915 ms, and stores the largest kernel matrix of
shape (2400, 70), i.e. with 70 support vectors, at 1.344 MBs. This implies that our method is
highly scalable.

4.3. Classification Performance

(a) Accuracy (b) F1-Score (c) BCE Loss

Figure 5: Classification Metrics

Figure 5 shows some classification metrics on both training and test sets. Particularly, we
note that while the performance improves as we step through time, there is some variability
from step to step. This can be expected since the optimization algorithm is not designed
to particularly optimize any of these metrics. With enough steps, we see that the model is
correctly able to classify all the points in both, training and test sets. Finally, we note that
the performance on both sets is similar, indicating that our model is not over-fitting to the
training set.

17

References

Ahipasaoglu, S. D., Sun, P., and Todd, M. J. (2008). Linear convergence of a modified frank-
wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optimization Methods
Software, 23(1):5–19.

Bădoiu, M. and Clarkson, K. L. (2008). Optimal core-sets for balls. Computational Geometry,
40(1):14–22.

Frandi, E., Ñanculef, R., Gasparo, M. G., Lodi, S., and Sartori, C. (2013). Training support
vector machines using frank-wolfe optimization methods. International Journal of Pattern
Recognition and Artificial Intelligence, 27(03):1360003.

Frandi, E., Ñanculef, R., and Suykens, J. A. K. (2015). A partan-accelerated frank-wolfe
algorithm for large-scale svm classification. In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1–8.

Frank, M. and Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110.

Frieß, T.-T., Cristianini, N., and Campbell, C. (1998). The kernel-adatron algorithm: A fast
and simple learning procedure for support vector machines. In Proceedings of the Fifteenth
International Conference on Machine Learning, ICML ’98, page 188–196, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

GuéLat, J. and Marcotte, P. (1986). Some comments on wolfe’s ‘away step’. Mathematical
Programming, 35(1):110–119.

Herbrich, R. and Graepel, T. (2000). A pac-bayesian margin bound for linear classifiers:
Why svms work. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural
Information Processing Systems, volume 13. MIT Press.

Kumar, P., Mitchell, J. S. B., and Yildirim, E. A. (2004). Approximate minimum enclosing
balls in high dimensions using core-sets. ACM J. Exp. Algorithmics, 8:1.1–es.

Lee, Y.-J. and Mangasarian, O. (2001a). Ssvm: A smooth support vector machine for classifi-
cation. Computational Optimization and Applications, 20(1):5–22.

Lee, Y.-J. and Mangasarian, O. L. (2001b). RSVM: Reduced Support Vector Machines, vol-
ume 1, pages 1–17.

Mangasarian, O. and Musicant, D. (1999). Successive overrelaxation for support vector ma-
chines. IEEE Transactions on Neural Networks, 10(5):1032–1037.

Mangasarian, O. and Musicant, D. (2000). Active support vector machine classification. In
Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information Processing
Systems, volume 13. MIT Press.

Mangasarian, O. L. and Musicant, D. R. (2001). Lagrangian support vector machines. J. Mach.
Learn. Res., 1:161–177.

Pang, J.-S. (1983). Methods for quadratic programming: A survey. Computers & Chemical
Engineering, 7(5):583–594.

18

Roobaert, D., Karakoulas, G., and Chawla, N. V. (2006). Information Gain, Correlation and
Support Vector Machines, pages 463–470. Springer Berlin Heidelberg, Berlin, Heidelberg.

Scholkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.

Sentelle, C., Anagnostopoulos, G. C., and Georgiopoulos, M. (2008). A fast revised simplex
method for svm training. In 2008 19th International Conference on Pattern Recognition,
pages 1–4.

Shawe-Taylor, J., Bartlett, P., Williamson, R., and Anthony, M. (1998). Structural risk
minimization over data-dependent hierarchies. IEEE Transactions on Information Theory,
44(5):1926–1940.

Smola, A. J., Bartlett, P., Schölkopf, B., and Schuurmans, D. (2000). Advances in Large-Margin
Classifiers. The MIT Press.

Tsang, I.-H., Kwok, J.-Y., and Zurada, J. (2006). Generalized core vector machines. IEEE
Transactions on Neural Networks, 17(5):1126–1140.

Tsang, I. W., Kwok, J. T., and Cheung, P.-M. (2005). Core vector machines: Fast svm training
on very large data sets. Journal of Machine Learning Research, 6(13):363–392.

Vishwanathan, S. V. N., Smola, A. J., and Murty, M. N. (2003). Simplesvm. In Proceedings of
the Twentieth International Conference on International Conference on Machine Learning,
ICML’03, page 760–767. AAAI Press.

Wolfe, P. (1970). Convergence theory in nonlinear programming. Integer and nonlinear pro-
gramming, pages 1–36.

Yildirim, E. A. (2008). Two algorithms for the minimum enclosing ball problem. SIAM Journal
on Optimization, 19(3):1368–1391.

19

Appendix A. Support Vector Machines

A.1. Problem Description

(a) (b)

Figure 6: Left : SVMa. Right : Hinge lossb.

aSource: analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners
bSource: hackernoon.com/hinge-loss-a-steadfast-loss-evaluation-function-for-the-svm-classification-models-

in-ai-and-ml

Assume we are given a finite number, say m ∈ N, of point pairs, (xi, yi) ∈ X × Y , where i ∈
[m] = {1, . . . ,m} and Y = {−1,+1}. Our objective is to find a maximum margin hyperplane
in a Hilbert space, H, that separates the features {Φ (xi) : yi = −1} and {Φ (xi) : yi = +1},
where Φ : X → H is a feature mapping (see Figure 6a). The benefit of working in a feature
space, H, is that it allows us to capture x-y relationships that cannot be modelled using a
linear classifier in the input space, X .

We begin by noting that any hyperplane in H can be written as {ϕ ∈ H : ⟨ϕ,w⟩H + b = 0},
with w ∈ H and b ∈ R. Such a hyperplane induces a classifier, f (·;w, b) : X → Y , defined as
f (x;w, b) = sign (⟨Φ (x) ,w⟩H + b), where sign (·) : R→ {−1,+1} is defined as

sign (x) =

{
−1, x < 0

+1, x ≥ 0

Now, the distance of any feature, Φ (x), from this hyperplane is given by

d (x;w, b) =
|⟨Φ (x) ,w⟩H + b|

∥w∥H

A.2. Hard-Margin SVM

For now, assume that the points are linearly separable in H, and that f (·;w, b) is an error-
free classifier, i.e. f (xi;w, b) = yi, ∀i ∈ [m]. Then, the distance of any mapping from the

20

https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners
https://www.hackernoon.com/hinge-loss-a-steadfast-loss-evaluation-function-for-the-svm-classification-models-in-ai-and-ml
https://www.hackernoon.com/hinge-loss-a-steadfast-loss-evaluation-function-for-the-svm-classification-models-in-ai-and-ml

corresponding hyperplane is given by

d̃ (xi;w, b) =
yi (⟨Φ (xi) ,w⟩H + b)

∥w∥H

Since this distance does not change when we scale w and b with the same factor, i.e. w→ tw
and b→ tb, for t ∈ R, we can simply scale w and b such that mini∈[m] yi (⟨Φ (xi) ,w⟩H + b) = 1,
and we have the same error-free classifier. Then, our maximum margin objective is equivalent
to the following constrained optimization problem:

min
w,b

1

2
∥w∥2H

subject to yi (⟨Φ (xi) ,w⟩H + b) ≥ 1, ∀i ∈ [m]
(34)

which gives us a hard-margin classifier.

A.3. The (Soft-Margin) L1-SVM Optimization Problem

We relax our error-free classification constraint and instead modify the objective to trade-off
the margin width a loss incurred on the training points:

min
w,b

1

2
∥w∥2H + C

∑
i∈[m]

ℓ (yi (⟨Φ (xi) ,w⟩H + b))

 (35)

where C > 0 controls the trade-off and we use the hinge loss, ℓ : R → R+, defined as
ℓ (x) = max (0, 1− x) (see Figure 6b). This gives us a soft-margin classifier – a classifier
that can make mistakes even on the points it is fitted on. Clearly, this allows us to tackle the
case when the dataset is linearly inseparable in the feature space – a situation hard-margin
SVMs are not designed for. Furthermore, we will see in (36) that we can also interpret this as
adding L1 regularization to the objective.

Discussion on the Hinge Loss

The hinge loss, ℓ, can be seen as a smooth approximation of the characteristic function ι− on
the negative reals (which can be used to make the inequality constraint in (35) implicit). Such
a smooth approximation is needed to use Newton’s method. Hinge loss has a few favorable
properties:

• Like ι−, ℓ is convex and decreasing.

• It equals ι− on [1,∞), and approaches ∞ as the argument goes to −∞, like ι−.

• Unlike ι−, ℓ is differentiable and closed.

Let’s interpret the hinge loss:

• When yi (⟨Φ (xi) ,w⟩H + b) < 0, the point xi is misclassified by the classifier f (·;w, b)
and we incur a penalty equal to the distance from the hyperplane corresponding to yi.

• When 0 < yi (⟨Φ (xi) ,w⟩H + b) < 1, the point is correctly classified but it lies between
the margin and the corresponding hyperplane, i.e. it is too close to the decision boundary.

21

Therefore, we penalize such a point in the same way, but in this case the hinge loss is
between 0 and 1. In other words, we penalise the classifier but not as much as if the
point was incorrectly classified.

• Finally, when 1 < yi (⟨Φ (xi) ,w⟩H + b), i.e. the point is on the correct side of the
corresponding hyperplane, we don’t penalise the classifier.

A.3.1. Primal Problem

We turn our soft margin optimization objective (35) into a differentiable objective by intro-
ducing auxiliary variables, ξ = {ξi}i∈[m]:

min
w,b,ξ

1

2
∥w∥2H + C

∑
i∈[m]

ξi

subject to yi (⟨Φ (xi) ,w⟩H + b) ≥ 1− ξi,

ξi ≥ 0, ∀i ∈ [m]

(36)

where either yi (⟨Φ (xi) ,w⟩H + b) ≥ 1 and ξi = 0 as in (34), or yi (⟨Φ (xi) ,w⟩H + b) < 1 and
ξi = 1− yi (⟨Φ (xi) ,w⟩H + b). For this reason, ξi are called slack variables.

A.3.2. Dual Problem

The Lagrangian of the problem is given by

L (w, b, ξ,α,λ) =
1

2
∥w∥2H + C

∑
i∈[m]

ξi

+
∑
i∈[m]

αi (1− ξi − yi (⟨Φ (xi) ,w⟩H + b)) +
∑
i∈[m]

λi (−ξi)

with dual variable constraints αi ≥ 0 and λi ≥ 0, ∀i ∈ [m]. Our dual objective is given by

g (α,λ) = inf
w,b,ξ

L (w, b, ξ,α,λ)

= inf
w

1

2
∥w∥2H −

∑
i∈[m]

αiyi ⟨Φ (xi) ,w⟩H

− inf
b

∑
i∈[m]

αiyi

 b+ inf
ξ

∑
i∈[m]

ξi (C − αi − λi)

+
∑
i∈[m]

αi

The first term is the unique minimum of a 1-strongly convex function, which we can derive by
setting the gradient with respect to w to 0:

∂

∂w

1

2
∥w∥2H −

∑
i∈[m]

αiyi ⟨Φ (xi) ,w⟩H

 = w −
∑
i∈[m]

αiyiΦ (xi) = 0 =⇒ w =
∑
i∈[m]

αiyiΦ (xi)

22

which gives

inf
w

1

2
∥w∥2H −

∑
i∈[m]

αiyi ⟨Φ (xi) ,w⟩H

 = −1

2

∥∥∥∥∥∥
∑
i∈[m]

αiyiΦ (xi)

∥∥∥∥∥∥
2

As for the other two terms, they involve an infimum over affine functions of b and ξ. Hence,
they are equal to −∞ if any of the coefficients are non-zero. In summary,

g (α,λ) =


∑

i∈[m] αi − 1
2

∥∥∥∑i∈[m] αiyiΦ (xi)
∥∥∥2 , ∑

i∈[m] αiyi = 0 and αi = C − λi, ∀i ∈ [m]

−∞, otherwise

Finally, we eliminate the dependence on λ by noting that αi = C − λi =⇒ αi ≤ C. This gives
us our dual problem,

max
α

∑
i∈[m]

αi −
1

2

∥∥∥∥∥∥
∑
i∈[m]

αiyiΦ (xi)

∥∥∥∥∥∥
2

subject to
∑
i∈[m]

αiyi = 0 and 0 ≤ αi ≤ C, ∀i ∈ [m]

(37)

Since Slater’s conditions are satisfied, the KKT conditions are necessary and sufficient for
optimality. Setting the derivative of the Lagrangian with respect to w to 0 gives us

w∗ =
∑
i∈[m]

α∗
i yiΦ (xi) (38)

Hence, we can solve the dual problem to find α∗, and then use Equation 38 to recover the
primal optimum, w∗.

A.4. Kernel SVM

(37) involves inner products between the feature vectors, suggesting that we can kernelize the
problem, thereby doing away with explicit feature mappings which are harder to specify and
messier to work with than the induced kernel.

A.4.1. Primal Problem

Let Φ (x) = k (x, ·) ∈ H induce a positive definite kernel, k (·, ·) : X × X → R, with H its
Reproducing Kernel Hilbert Space (RKHS) of functions on X . Then we can rewrite (35) as

min
w,b

1

2
∥w∥2H + C

∑
i∈[m]

ℓ (yi (⟨k (xi, ·) ,w⟩H + b))

 (39)

23

A.4.2. Dual Problem

Following (37), we can rewrite the dual problem of (39) in a kernelized form

max
α

∑
i∈[m]

αi −
1

2

∑
i∈[m]

∑
i∈[j]

αiαjyiyjk (xi,xj)

subject to
∑
i∈[m]

αiyi = 0 and 0 ≤ αi ≤ C, ∀i ∈ [m]
(40)

The solution to the primal problem, w∗, can be recovered from the solution to the dual problem,
α∗, by setting

w∗ (·) =
∑
i∈[m]

α∗
i yik (xi, ·) (41)

24

Appendix B. Pseudocode and Implementation

Algorithm 1 Modified Frank-Wolfe Algorithm for the Minimum Enclosing Ball Problem
Require: S, ϵ.
1: initialization: compute I0 and α0;
2: ∆̃2 ←− k̃(x̃1, x̃1); ▷ Equation 14
3: R0 ←−

∑
i,j∈I0 (α0)i (α0)j k̃(x̃i, x̃j);

4: r20 ←− ∆̃2 −R0; ▷ Equation 12
5: i∗ ←− argmaxi∈[m] γ

2(α0; i) := ∆̃2 +R0 − 2
∑

j∈I0 (α0)j k̃(x̃j, x̃i); ▷ Equation 25
6: j∗ ←− argminj∈I0 γ

2(α0; j); ▷ Equation 26
7: δ+0 ←−

γ2(α0;i∗)
r2k

− 1; ▷ Equation 32

8: δ−0 ←− 1− γ2(α0;j∗)
r2k

; ▷ Equation 33
9: k ←− 0;

10: while δ+k > (1 + ϵ)2 − 1 do ▷ Section 3.3.4
11: if δ+k ≥ δ−k then ▷ Lemma 1
12: λk ←− 1

2

(
1− r2k

γ2(αk;i∗)

)
; ▷ Equation 30

13: k ←− k + 1;
14: αk ←− (1− λk−1)αk−1 + λk−1ei∗ ; ▷ Equation 20

15: r2k ←− r2k−1

(
1 +

(δ+k−1)
2

4(1+δ+k−1)

)
; ▷ (Yildirim, 2008, Lemma 3.2)

16: else
17: λk ←− min

{
δ−k

2(1−δ−k)
,

(αk)j∗

1−(αk)j∗

}
; ▷ Equation 31

18: k ←− k + 1;
19: αk ←− (1 + λk−1)αk−1 − λk−1ej∗ ; ▷ Equation 22
20: r2k ←− (1 + λk−1)r

2
k−1 − λk−1(1 + λk−1)(δ

−
k−1 − 1)r2k−1;

21: end if
22: Ik ←− {i ∈ I : (αk)i > 0}; ▷ Section 3.3.3
23: Rk ←−

∑
i,j∈Ik (αk)i (αk)j k̃(x̃i, x̃j);

24: i∗ ←− argmaxi∈I γ
2(αk; i) := ∆̃2 +Rk − 2

∑
j∈Ik (αk)j k̃(x̃j, x̃i); ▷ Equation 25

25: j∗ ←− argminj∈Ik γ
2(αk; j); ▷ Equation 26

26: δ+k ←−
γ2(αk;i

∗)
r2k

− 1; ▷ Equation 32

27: δ−k ←− 1− γ2(αk;j
∗)

r2k
; ▷ Equation 33

28: end while
29: return IS = Ik, α = αk.

1 import numpy as np
2

3 class GaussianKernel:
4

5 def __init__(self , gamma):
6 self.radius_sq = 1
7 self.gamma_sq = gamma **2
8

9 def __call__(self , *args):
10 return self.compute (*args)

25

11

12 def compute(self , x_rows , x_cols):
13 distances = np.square(
14 np.linalg.norm(x_rows , axis=1, keepdims=True)
15) + np.square(
16 np.linalg.norm(x_cols , axis=1, keepdims=True)
17).T - 2 * x_rows @ x_cols.T
18 distances = np.exp(-self.gamma_sq*distances)
19 return distances

Listing 1: SVM Kernel Implementation (svm_kernel.py)

1 import numpy as np
2 from utils import expand_dims
3

4 def kronecker_delta(idx_rows , idx_cols):
5 idx_rows , idx_cols = expand_dims(idx_rows , idx_cols)
6 kd_matrix = (idx_rows.T == idx_cols).astype(int)
7 return kd_matrix
8

9 class MEBKernel:
10

11 def __init__(self , svm_kernel , C):
12 self.svm_kernel = svm_kernel
13 self.C = C
14 self.radius_sq = svm_kernel.radius_sq + 1 + 1/C
15

16 def __call__(self , *args):
17 return self.compute (*args)
18

19 def compute(self , idx_rows , idx_cols):
20 y_rows , y_cols = expand_dims(S[idx_rows , -1], S[idx_cols , -1])
21 kernel_matrix = (y_rows.T*y_cols) \
22 * (self.compute_svm_kernel(idx_rows , idx_cols) + 1) \
23 + kronecker_delta(idx_rows , idx_cols) / self.C
24 return kernel_matrix
25

26 def compute_svm_kernel(self , idx_rows , idx_cols):
27 x_rows , x_cols = expand_dims(S[idx_rows , :-1], S[idx_cols , :-1])
28 return self.svm_kernel(x_rows , x_cols)
29

30 def init_coreset(self , indices):
31 self.coreset_precomputations = self.compute(
32 np.arange(len(S)), indices
33)
34

35 def add_precomputations(self , index):
36 coreset_size = self.coreset_precomputations.shape [1]
37 self.coreset_precomputations = np.hstack ((
38 self.coreset_precomputations ,
39 self.compute(np.arange(len(S)), [index])
40))
41

42 def remove_precomputations(self , index):
43 coreset_size = self.coreset_precomputations.shape [1]
44 self.coreset_precomputations = \
45 np.delete(self.coreset_precomputations , [index], 1)

Listing 2: MEB Kernel Implementation (meb_kernel.py)

26

1 import numpy as np
2 from utils import expand_dims , evaluate
3

4 class ModifiedFW:
5

6 def __init__(self , meb_kernel):
7 self.meb_kernel = meb_kernel
8

9 def initialize(self):
10 pos_indices , = np.where(S[:, -1] == +1.)
11 neg_indices , = np.where(S[:, -1] == -1.)
12 distance_matrix = self.meb_kernel.compute_svm_kernel(
13 pos_indices , neg_indices
14)
15 _j , _k = np.unravel_index(
16 np.argmax(distance_matrix), distance_matrix.shape
17)
18 j, k = int(pos_indices[_j]), int(neg_indices[_k])
19 coreset = [j, k]; self.meb_kernel.init_coreset(coreset)
20 alpha = np.zeros(len(S)); alpha[j] = alpha[k] = 0.5
21 return coreset , alpha
22

23 def optimize(self , eps):
24

25 def compute_R ():
26 non_zero_duals , = expand_dims(alpha_k[coreset_k])
27 assert non_zero_duals.shape == (1, len(coreset_k))
28 R = non_zero_duals \
29 @ self.meb_kernel.coreset_precomputations[coreset_k] \
30 @ non_zero_duals.T
31 return R.squeeze ()
32

33 def search_directions ():
34 non_zero_duals , = expand_dims(alpha_k[coreset_k])
35 gamma_sq = (self.meb_kernel.coreset_precomputations \
36 @ non_zero_duals.T).squeeze ()
37 i_star = np.argmin(gamma_sq)
38 gamma_sq_i_star = delta_sq+R_k -2* gamma_sq[i_star]
39 delta_plus = gamma_sq_i_star/r_k_sq - 1.
40 j_star = coreset_k[np.argmax(gamma_sq[coreset_k])]
41 gamma_sq_j_star = delta_sq+R_k -2* gamma_sq[j_star]
42 delta_minus = 1. - gamma_sq_j_star/r_k_sq
43 return i_star , delta_plus , j_star , delta_minus
44

45 k = 0
46 coreset_k , alpha_k = self.initialize ()
47 delta_sq = self.meb_kernel.radius_sq
48 R_k = compute_R ()
49 r_k_sq = delta_sq - R_k
50 assert r_k_sq > 0.
51 i_star , delta_plus , j_star , delta_minus = search_directions ()
52

53 dual_iterates , dual_evaluations = [alpha_k], [r_k_sq]
54 coreset_sizes , step_sizes = [2], list()
55

56 while 1+ delta_plus > (1+ eps)**2:
57

58 coreset_sizes.append(coreset_sizes [-1])

27

59

60 if delta_plus >= delta_minus:
61 if i_star not in coreset_k:
62 coreset_k.append(i_star)
63 self.meb_kernel.add_precomputations(i_star)
64 coreset_sizes [-1] += 1
65 lambda_k = delta_plus /(2*(1+ delta_plus))
66 step_sizes.append(lambda_k)
67 k += 1
68 e_star = np.zeros_like(alpha_k); e_star[i_star] = 1.
69 alpha_k = (1-lambda_k)*alpha_k + lambda_k*e_star
70 r_k_sq = r_k_sq * (1 + (delta_plus **2) /(4*(1+ delta_plus)))
71

72 else:
73 best_step = lambda_k = delta_minus / (2*(1- delta_minus))
74 max_feasible = alpha_k[j_star] / (1-alpha_k[j_star])
75 if lambda_k > max_feasible:
76 lambda_k = max_feasible
77 to_remove = coreset_k.index(j_star)
78 coreset_k.pop(to_remove)
79 self.meb_kernel.remove_precomputations(to_remove)
80 coreset_sizes [-1] -= 1
81 step_sizes.append(-lambda_k)
82 k += 1
83 e_star = np.zeros_like(alpha_k); e_star[j_star] = 1.
84 alpha_k = (1+ lambda_k)*alpha_k - lambda_k*e_star
85 r_k_sq = (1+ lambda_k) * r_k_sq \
86 * (1-lambda_k *(delta_minus -1))
87

88 dual_iterates.append(alpha_k)
89 dual_evaluations.append(r_k_sq)
90

91 R_k = compute_R ()
92 i_star , delta_plus , j_star , delta_minus = search_directions ()
93

94 return dual_iterates , dual_evaluations , coreset_sizes , coreset_k ,
step_sizes

Listing 3: Modified Frank Wolfe for MEB Problem Implementation (modified_fw.py)

28

	Classification with SVM
	The L2-SVM Optimization Problem
	Primal Problem
	Dual Problem
	Recovering the Primal Optimum
	Discussion on the Hyperparameter C

	To Solve the Primal or the Dual?
	Nature of the Optimization Problem

	Equivalence Between L2-SVM and MEB Problem
	MEB Problem
	Normalizing Condition on the Kernel

	Frank-Wolfe Algorithm for the MEB-SVM Problem
	Standard FW Algorithm
	Modified FW Algorithm
	MFW Algorithm for the MEB Problem
	Initialization
	Optimal Step Sizes
	Updating the Coreset
	Termination Condition
	Convergence Results
	Complexity Analysis

	Experiments
	Convergence Results
	Physical Cost
	Classification Performance

	Support Vector Machines
	Problem Description
	Hard-Margin SVM
	The (Soft-Margin) L1-SVM Optimization Problem
	Primal Problem
	Dual Problem

	Kernel SVM
	Primal Problem
	Dual Problem

	Pseudocode and Implementation

