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Abstract

Message Passing Neural Networks (MPNNs) are a class of Graph Neural Net-
works (GNNs) that leverage graph topology to propagate messages across in-
creasingly larger neighborhoods. The message-passing scheme leads to two
distinct challenges: over-smoothing and over-squashing. While several algo-
rithms have successfully addressed the over-smoothing issue, their impact on
over-squashing remains largely unexplored. This represents a critical gap in
the literature, as failing to mitigate over-squashing implies that these methods
may not be suitable for long-range tasks. In this thesis, we take the first step
toward closing this gap by studying the DropEdge algorithm in the context
of over-squashing. We present novel theoretical findings that characterize its
detrimental effects on sensitivity between distant nodes, suggesting its unsuit-
ability for long-range tasks. We further evaluate DropEdge models on synthetic
and real-world datasets, demonstrating its negative effects. Additionally, we
propose a new hypothesis about DropEdge’s influence on GNNs — while it ef-
fectively increases model-dataset alignment on short-range tasks, it misaligns
them on long-range tasks, leading to high approrimation error and overfitting
to short-range artifacts in the training data. Our work emphasizes the need
to evaluate methods designed for training deep GNNs, with a renewed focus on

long-range graph benchmarks.

The codebase associated to this thesis is available at

https://github.com /ignasa007/DropEdge-on-OverSquashing.

Vil


https://github.com/ignasa007/DropEdge-on-OverSquashing




Contents

Acknowledgement

Abstract

1 Introduction

1.1
1.2
1.3
1.4
1.5

Overview . . . . . . . . e
Research Objectives . . . . . . . . . . . . . . . .
Contributions . . . . . . . . . ..
Outline . . . . . . . .
A Note on Notation . . . . . . . . .. . .. ... ... . ... ...

2 Background

2.1

2.2

2.3

24

Introduction to Graph Theory . . . . . . . . ... ... ... ... ...
2.1.1 Notation . . . . . . .. . .
2.1.2  Cheeger’s Inequality . . . . .. .. ... . L
2.1.3 Effective Resistance . . . . . . . .. ... oL
2.1.4  Expected Commute Time . . . . . .. ... ... ... ... ....
Message-Passing Neural Networks . . . . . .. . . ... ... ... .....
2.2.1  Graph Convolutional Networks . . . . .. . ... ... ... .. ..
2.2.2  Graph Attention Networks . . . . . . . . .. ... ...
DropEdge . . . . . .
2.3.1  The Algorithm . . . . . . . . ...
2.3.2 Effect on Over-smoothing . . . . . .. ... ... ... ... .. ..
Over-squashing . . . . . . . . . .. ..
2.4.1  Sensitivity . . . . ..
2.4.2 Influence Distribution . . . . . .. .. ...
2.4.3 Jacobian Obstruction . . . . . . . . .. ... ...

1X

vii

S O = W =

o



2.5 Related Works . . . . . . . .

2.5.1 Treating Over-smoothing . . . . . . . . ... ... ... ... .. ..
2.5.2  Treating Over-squashing . . . . . . . . . . . .. .. ... .. ....
2.5.3 Towards a Unified Treatment . . . . . . . . ... ... ... ....
2.5.4 Long Range Graph Benchmarks . . . . . ... ... ... ... ...
Theory
3.1 DropEdge Random Walk . . . . . . ... . ... ... 0
3.1.1 Inspecting the Scaling Factor . . . . .. .. ... ... ... ....
3.2 Sensitivity in a DropEdge Model . . . . . . . ... ... L.
3.2.1 1-Layer Linear GCN . . . . . . . . ... .. ... .. ... ...,
3.2.2 L-Layer Linear GCN . . . . . . . .. ... ... ... . ......
3.2.3 L-layer Nonlinear MPNN . . . . . . . . ... ... ... ... ....
3.2.4 Monte-Carlo DropEdge . . . . . . .. ... ... ...
Experiments
4.1 Signal Propagation . . . . . .. ...
4.1.1 Propagation Distance . . . . . . . . . ...
4.1.2 Effect of DropEdge . . . . . . . . ... L L
4.2 SyntheticZINC . . . . . . . .
4.2.1 Experimental Setup . . . . . . ...
422 Results. . . . . . .
4.3 Real-World Datasets . . . . . . . . . ...
4.3.1 Experimental Setup . . . . . . .. ..o
4.3.2 Citation Networks . . . . . . . . . ... . L
4.3.3 Molecular Datasets . . . . . . .. .. ... Lo
Conclusion
5.1 Key Findings . . . . . . . ..
5.2  Limitations . . . . . . ..
5.3 Future Directions and Final Remarks . . . . . . ... ... ... ... ...

37
38
43
45
46
49
o4
o6

59
60
60
63
66
66
67
68
69
70
72



Chapter 1

Introduction

1.1 Overview

In the modern age, graph-structured data is ubiquitous. It is found in various domains like
social media platforms, online retail platforms, molecular structures, transportation net-
works, and even computer systems. Understanding and modeling these graphs has become
increasingly important, attracting significant attention from a broad range of adjacent
fields. This includes the rapidly growing area of machine learning!, driven by the promise
of deep learning algorithms that have profoundly impacted our daily lives. Numerous algo-
rithms, including graph neural networks (GNNs) [Sca-+09; Li+ 16|, have been developed for
learning on graphs, supported by a wide array of engineering tools, like PyTorch Geometric
[FL19], Tensorflow GNN |[Fer+23] and the Deep Graph Library [Wan-+19|, which have
enabled rapid development. GNNs have proven to be powerful tools for modelling graph-
structured data, and have found applications in real-world scenarios like inferring relations
in social networks [GWJ18; You+20a; You+20b; You+20c; You+22|, improving recom-
mendation systems [MBB17; Yin+18; Zhe+ 22|, and molecular modelling for biochemical
applications [WKO06; ZL17|, amongst others. Owing to their impressive performance, GNNs

have become a popular choice for graph analysis in recent times.

Thttps://x.com/prlz77 /status/1178662575900368903
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Drawing inspiration from message-passing algorithms used for inference in probabilis-
tic graphical models [YFWO03|, a popular class of GNNs, called message-passing neural
networks (MPNNs) [Gil+17], recursively process node-level and edge-level features using
message-passing layers. These layers are stacked to allow each node to aggregate informa-
tion from an increasingly larger neighborhood, akin to how convolutional neural networks
(CNNs) learn hierarchical features for images [LeC+89]. However, unlike in image-based
deep learning, where ultra-deep CNN architectures have led to performance breakthroughs
[Sze+15, 22 layers; He+16, 152 layers|, shallow GNNs often outperform deeper models on
many graph learning tasks [Zho+21b]. In some cases, like with citation networks [Sen+08;
YCS16] and product recommendations [McA-+15; She+18|, the learning tasks are inher-
ently short-range, meaning that local information-aggregation is sufficient for approxi-
mating the ground-truth. Hence, deeper networks can result in model misspecification,
leading to poor generalization to unseen data. In other cases, we have tasks requiring long-
range interactions (LRIs) for making good predictions. These include point clouds [Li+19],
meshes [Gon+20], and molecular networks whose chemical properties may be determined
by diametrically opposite atoms [MDS18|. Unfortunately, simply stacking more message-
passing layers does not suffice. Rather, it can be detrimental to model performance. This
is because deep GNNs suffer from unique issues like over-smoothing [LHW18; 0S20] and
over-squashing [AY21; Top+22|, which makes training them notoriously difficult.

Over-smoothing refers to the problem of layer-wise convergence of some node-similarity
measure [CW20a; Che+20a], i.e. node representations become too similar as they are re-
cursively processed using more and more layers [LHW18; OS20]. This is undesirable since
this limits the GNN output to depend only on the graph topology, failing to utilize the
information in the node features. Over-smoothing has garnered significant attention from
the research community, leading to both, theoretical results studying the phenomenon and
algorithms designed specifically to address it (see [RBM23] for a survey). Amongst these
methods is DropEdge [Ron+20], an implicit regularization technique which adds noise to the
optimization process by randomly dropping edges from the graph. Although DropEdge was,
theoretically and empirically, shown to reduce over-smoothing, the performance metrics on
real-world datasets progressively worsen as more layers are stacked [Ron+20; Zho-21b].
This implies that there continue to be issues that DropEdge does not resolve. Or, perhaps,

DropEdge introduces new problems which have gone unnoticed up till now.



The other issue specific to GNNs is over-squashing. When the task entails modelling
LRIs, information needs to be propagated across the graph without significant loss. How-
ever, for certain graph structures, e.g. “small world” graphs like social networks, the neigh-
borhood size grows exponentially as the distance from a node grows [CZS18|. In such cases,
information may be lost as it is squashed through graph bottlenecks [AY21]. This makes
it harder for MPNNs to facilitate communication between nodes at long distances, which is
imperative for good performance on long-range tasks. In other words, over-squashing is
undesirable since it reduces the effective receptive field of the models. To alleviate over-
squashing, several graph-rewiring techniques have been proposed [AY21; DLV22; Bla+23;
KBM23; Ngu+23| that, in some sense, aim to improve the connectivity of the graph. With
all these methods, one common idea is that edges need to be added in a strategic manner
to alleviate over-squashing. Interestingly, DropEdge [Ron+20|, which is one of the more
popular methods for training deep GNNs, only removes edges. This should, in principle,

amplify over-squashing levels, making it harder for models to capture LRIs.

The empirical evidence in support of DropEdge, as well as most other methods designed
for training deeper GNNs, has been mainly collected on short-range tasks. That is, it simply
suggests that these methods prevent loss of local information, but whether they facilitate
capturing LRIs remains inconclusive. Of course, on long-range tasks, deeper GNNs are
useless if they cannot capture such interactions. This concern is also relevant for other
methods aimed at alleviating over-smoothing, especially since evidence suggests that this
could result in a trade-off with over-squashing [Gir+23; Ngu+23|. Unfortunately, possibly
because over-squashing is a more recently discovered phenomenon, there has been little
research into how such methods affect it. However, with our growing understanding of
over-squashing and its negative impacts, it is essential to revisit these ideas and determine

their applicability to long-range tasks.

1.2 Research Objectives

Given the concerns raised about the effectiveness of existing methods for training deeper
GNNs on long-range tasks, it is crucial to re-evaluate their capability in this context. This

re-evaluation is particularly important as methods like DropEdge have shown success in
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short-range tasks but remain understudied in their ability to mitigate over-squashing and
model LRIs. In this work, we aim to uncover the effects of DropEdge on over-squashing in
MPNNs, and to gain a better understanding of whether MPNNs benefit from its use on long-
range learning tasks, like they do on short-range ones. We will pursue this objective in two
ways: 1. indirectly, by studying the effect of DropEdge on the expected commute time in
the computational graph, and 2. directly, by studying its effects on the sensitivity of node
representations [Top+22|, as well as on performance on synthetic and real-world tasks. By
achieving these objectives, this study will offer critical insights into the role of DropEdge
in the context of the over-squashing phenomenon and its effect on the long-range task
performance of MPNNs. These findings will also help inform the design and evaluation of
future GNN architectures, ensuring that models can handle both short-range and long-range

dependencies effectively.

1.3 Contributions

The main contribution of this thesis is a theoretical characterization of the effect of
DropEdge on over-squashing. Specifically, by computing the expected sensitivity of the
node representations (inversely related to over-squashing) in a linear GCN, we show that
DropEdge provably reduces the effective receptive field of the model. Furthermore, we ex-
tend the existing theoretical results on sensitivity in non-linear MPNNs [Xu-+18; Bla+23; Di
23| to the DropEdge setting, again showing that it exacerbates the over-squashing prob-
lem. Finally, we show that all our conclusions about the training-time setting of DropEdge
continue to hold for its test-time setting [XZL23].

We also provide experimental support for these results: firstly, in a training-free set-
ting, we show that DropEdge reduces the average distance to which information from a
source propagates. Next, with a semi-synthetic dataset |Gio+24|, we show that turning
DropEdge on leads to a significant decline in performance on long-range tasks. Finally, we
show that as the DropEdge probability increases, the performances of GNNs exhibit starkly
contrasting trends between citation networks (Cora [McC-+00] and CiteSeer |[GBLIS|)
and molecular datasets (Proteins [DDO03] and MUTAG [KMBO05]). Accordingly, we propose

a novel hypothesis on the effect of DropEdge: for short-range tasks, DropEdge increases
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model-dataset alignment by reducing the receptive field of the GNN, thereby enhancing its
performance. Conversely, for long-range tasks, it decreases the model-dataset alignment,

resulting in poorer performance.

Our results suggest a need for a re-evaluation of methods designed to train deep GNNs,
with a focus on their performance on long-range tasks. Indeed, trainability of deep GNNs
does not necessarily imply that models can effectively propagate information over long
distances [AY21]. Especially with the reported trade-off between over-smoothing and over-
squashing [Gir+23; Ngu+23], there is a good reason to be skeptical about the suitability
of these methods towards modelling LRIs. Our work thoroughly examines DropEdge from
both theoretical and empirical perspectives; however, there are still many other techniques

that require further analysis.

1.4 Outline

The rest of this thesis is organised as follows. In Chapter 2, we will present the literature
relevant to our work. We will start with basic graph-theoretic concepts (Section 2.1) and
then move to introducing MPNNs (Section 2.2), DropEdge (Section 2.3), and over-squashing
(Section 2.4). We will conclude this section by discussing some related works (Section 2.5)
— these are not necessary for understanding our results, but are there to provide additional
context for it. In Chapter 3, we will present our novel theoretical results. We will start by
studying what we call a DropEdge random walk (Section 3.1), showing that its commute
times are larger than in a regular random walk. From there, we will move on to studying the
effect of DropEdge on over-squashing (Section 3.2) — we will start with simple models, and
progressively consider more general classes of MPNNs. In Chapter 4, we provide empirical
evidence supporting our theoretical results. Section 4.1 presents the inverse relationship
between propagation distance and commute time, as well as the negative effect of DropEdge
on it. In Section 4.2, we evaluate models on the SyntheticZINC dataset [Gio+24], again
concluding that DropEdge hurts model performance. Finally, in Section 4.3, we evaluate
the GCN and GAT models on real-world datasets, noting stark differences in the trends
in accuracy as the DropEdge probability is increased. Accordingly, we present a novel

hypothesis relating the effect of DropEdge on performance to the problem-radius.
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1.5 A Note on Notation

Throughout the thesis, we will try our best to maintain consistent notations. Although we
will introduce new notations as we proceed, for most part we will use the following KEITEX

fonts to denote different mathematical objects:

Object Font Case Examples
Scalars \mathnormal Lower or Upper | a, A, b, B
Vectors \mathbf Lower a, b, c

Matrices \mathbf Upper A B, C
Number Sets \mathbb Upper N, Z, R

Other Sets \mathcal Upper A, B, C
Functions \mathnormal or \mathsf | Lower and Upper | d, f, GNN, RelLU

Table 1.1: Font Conventions



Chapter 2

Background

This chapter is dedicated to providing the reader the necessary context for our work. We
will start with some graph theoretic foundations in Section 2.1, presenting the related
notational convention for this thesis (Section 2.1.1) and a discussion on 3 topological prop-
erties: Cheeger’s constant (Section 2.1.2), effective resistance (Section 2.1.3) and expected
commute time (Section 2.1.4). In the following sections, we will get into more GNN specific
literature. In Section 2.2, we will introduce MPNNs. We advise the reader to pay close at-
tention to the details of the GCN architecture in Section 2.2.1, since this will be our choice
of model to study in Chapter 3. We will also introduce the GAT model (Section 2.2.2),
which will be evaluated alongside GCN in Section 4.3. In Section 2.3, we will introduce the
DropEdge algorithm, and in Section 2.4, we will introduce theoretical results characterizing
the over-squashing phenomenon. Specifically, in Section 2.4.1, we will introduce sensitivity
of node representations as a measure of over-squashing, and relate it to the graph topol-
ogy. In Section 2.4.2, we will use sensitivity to define the influence distribution, and draw
its equivalence with the augmented random walk on the graph. Finally, in Section 2.4.3,
we will introduce the Jacobian obstruction as another measure of over-squashing, and
characterize it using the effective resistance between nodes. To conclude this chapter, we
will present some related works in Section 2.5 which are relevant for understanding the
significance of our contributions. This includes algorithms for addressing over-smoothing
(Section 2.5.1), over-squashing (Section 2.5.2) and their trade-off (Section 2.5.3), as well
as long-range graph benchmarks (Section 2.5.4).



2.1 Introduction to Graph Theory

[Top+22; Bla+23; Di +23; Gio+24| have shown that over-squashing in a GNN is intricately
related to topological properties of the graph, such as the curvature of its edges and the
effective resistance between two nodes. Accordingly, we will introduce 3 key topological
properties in this section: Cheeger’s constant, effective resistance and expected commute
time. Understanding these properties is crucial not only for interpreting the existing lit-
erature on over-squashing but also for motivating our approach of studying the impact
of DropEdge on over-squashing via the commute time in its computational graph. These
insights will allow us to discuss quantitative measures of over-squashing and explore the
theoretical results that link these measures to the topological properties. To facilitate this

discussion, we will start by setting up some basic notation.

2.1.1 Notation

Consider a weighted directed graph G (V, €, W), where V = [N] := {1,..., N} is the node
set, £ C V x V is the edge set, where (i,j) € £ if there’s an edge from node i to node 7,
and W : £ — R\ {0} maps each edge to an edge weight. In this work, we assume that the
edge weights are positive, i.e. W : & — R.,.

Definition 2.1 (Undirected Graph). If a graph G (V,E, W) is undirected, then (i,j) € €
if and only if (j,1) € E. Moreover, the edge weights are symmetric, i.e. W (i,5) = W (4,1).

Definition 2.2 (Unweighted Graph). If a graph G (V,E, W) is unweighted, then W (i, j) =
1, V(i,j) € E. We denote unweighted graphs by G (V, ).

Definition 2.3 (Adjacency Matrix). The adjacency matriz, A € ]R]ZVOXN, of the graph

G(V,E, W) is given as

0, (i,J) ¢ €

Note that the adjacency matrix of an undirected graph is symmetric, i.e. A = A, and

that of an unweighted graph is a binary matrix, i.e. A € {0, 1}NXN.



Lemma 2.1. In a graph G (V,E), the powers of the adjacency matriz encode the number
of paths of different lengths, i.e. forl € N, (Al)ji 1s the number of paths of length | starting
at node i € V and ending at node 7 € V.

Lemma 2.1 can be easily proved by explicitly expanding (Al)ji in terms of the entries of
A.

Definition 2.4 (Connected Nodes). In a graph G (V,E,W) with the adjacency matriz
denoted by A, a node 1 € V is connected to another node j € V if there exists a path
starting at node i and ending at node j, i.e. Al € N such that (Al)ji > 0.

Definition 2.5 (Geodesic Distance). In a graph G(V, &), the geodesic distance from a
node i € V to a connected node j € V 1is the length of the shortest path starting at i and
ending at j:

g (i, j) =min {l € N: (") >0}

For disconnected nodes (i,7), the shortest path is set to infinity: dg (i,j) = +oo. The

geodesic distance is also referred to as the shortest distance.

Definition 2.6 (L-hop Neighborhood). In an undirected graph G (V,E), the L-hop neigh-
borhood of a node © € V is the set of nodes it is exactly L-hops away from:

SO (@) ={jeV:ds(ji)=L}
We will use N (i) to denote the 1-hop neighborhood S™ (3).
Definition 2.7 (Degree Matrix). The in-degree matriz of a graph is given as
D™ = diag (Aly)
Similarly, the out-degree matrix is given as
D% := diag (ATlN)

For an undirected graph, D™ = D°“ = D.

We extend the notation to denote the diagonal entries of the degree matrices by di* :== D
and d"* == D9 Vi € V. Similarly, for an undirected graph, d; := Dy;, Vi € V.

(2

Definition 2.8 (Volume of a Graph). The volume of an undirected graph G (V, E) is defined
as the sum of the degrees of its nodes, vol (G) = tr(D) = 2|&]|.
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Definition 2.9 (Laplacian Matrix). The in-degree Laplacian matriz of a graph is given as
L™ =D"—- A

Similarly, the out-degree Laplacian matriz is given as
Lot — Dout — A

For an undirected graph, L™ = L°% =: L.

Definition 2.10 (Normalized Laplacian Matrices). The asymmetrically normalized Lapla-

ctan matrix of an undirected graph is given as
L*m .= DL =Iy — D'A

where - denotes the Moore-Penrose pseudoinverse. L*™Y™ is also called the random walk

Laplacian matriz. Similarly, the symmetrically normalized Laplacian matriz is given as
L= (DN L (DN =1y — (D")* A (D)

Definition 2.11 (Spectral Gap). The spectral gap of an undirected graph G (V,E,W) is
defined as the smallest non-zero eigenvalue of LY™. If the graph is connected, then it is
simply the second smallest eigenvalue \g, where 0 = A1 < Ay < ... Ay < 2 denote the

eigenvalues of L*Y™.

2.1.2 Cheeger’s Inequality

The Cheeger’s constant is a measure of how well-connected a graph is, particularly with
respect to the bottlenecks between different parts of the graph. It captures the idea of how
“easy” or “hard” it is to disconnect a graph by removing a small number of edges relative

to the size of the sets being separated.

Definition 2.12 (Cheeger’s Constant). For an undirected graph G (V,E), the conductance

10



(or the Cheeger’s constant) of the graph hg is defined as:

U ou|
¢ = Uev min {vol (U) ,vol W\ U)}

where 0 denotes the number of edges connecting the disjoint subset of V:
oUuU={3G,7)e€:ield,j€eV\U) or 1 €V\U,jeU)}

Note that we have extended the definition of vol such that vol (U) denotes the sum of degrees

of the vertices in U.

If hg is small, there is a cut that divides the graph into two parts with relatively few
edges between them, i.e. the graph has a bottleneck. In the context of GNNs, communica-
tion between these two parts involves a large amount of information exchange via a small

number of edges, which results in over-squashing; we will discuss this further in Section 2.4.

Cheeger’s inequality relates the Cheeger’s constant to the spectral gap of the graph:

Theorem 2.1 (Cheeger’s Inequality). For an undirected graph G (V,E), the Cheeger’s

constant and the spectral gap are related as

1
5)\2 < hg < V2X

Cheeger’s inequality adds support for spatial rewiring algorithms targeted at alleviating
over-squashing, which work by maximizing the spectral gap of the graphs, thereby reducing

the ‘bottleneckedness’ in the graph.

2.1.3 Effective Resistance

Consider an unweighted and undirected graph G (V, £). If we view the graph as an electrical
network with each edge representing a 1 Ohm resistor, then the effective resistance between
nodes ¢ and j is defined as the potential difference that would develop between them when

a unit current is injected at ¢ and drawn from j [DS84|. This is equivalent to performing
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e R, R, R, R, ;=R Ry *R,
Series:  —p—N—AW— = —AM—

Rl
J_/\;fq R, =(UR AR, TI/RY!
Parallel: MM, = —W—

Figure 2.1: Combining resistors connected in series and parallel.

well-known series and parallel manipulations (see Figure 2.1!) to compute the resistance
between nodes ¢ and j in the circuit. Note that we have assumed that the nodes ¢ and
7 are connected in G, i.e. there exists at least one path between them. If the nodes are

disconnected, it does not make sense to talk about the effective resistance between them.

Lemma 2.2 (Effective Resistance). In an undirected graph G (V, E), the effective resistance

between two connected nodes i,j € V is given by
_ (eli nT i Y — 7t t t
R = (e() _ e(])) L (e() _ e(])) =L+ L, —2L,

where e denotes the i™" vector in the canonical-basis of RN . If the nodes are disconnected,

Rij = +00.

The effective resistance measures how well two nodes are connected, such that lower
effective resistance suggests better connectivity. For instance, if there are k edge-disjoint
paths connecting two nodes — meaning no edge is shared between any two paths — and
each path has a length at most [, then the effective resistance between those nodes will be
no greater than [/k. Therefore, a high number (large k) of short paths (small [) between

two nodes results in low effective resistance between them.

The following is an important result which has been used to design spacial rewiring

techniques targeted at reducing over-squashing in MPNNs |Bla-+23]:

Theorem 2.2 (Rayleigh’s Monotonicity). Adding an edge to an undirected graph G (V,E)

can never increase the effective resistance between any two nodes.

1Source: https://www.instructables.com/How-to-Change-the-Resistance-of-a-Resistor-With-An
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See [Lov93, Corollary 4.3| for a proof. Clearly, the same holds for the total resistance:

Definition 2.13 (Total Resistance). The total resistance of a connected undirected graph

G(V, &) is defined as the sum of effective resistances over all node-pairs:

Ry = Z Rij

(4,4)€EV XV

2.1.4 Expected Commute Time

In order to define the expected commute time, going forward, we will consider a random
walk on a connected graph G (V,E,W). The case of a disconnected graph can be dealt

with by setting the commute times between disconnected nodes to oo.

Definition 2.14 (Random Walk). A random walk on G (V,E, W) is a discrete time Markov
process where, at each time-step, the walk transitions to an adjacent node sampled from a
distribution proportional to the edge weights. In other words, it is a Markov process on the

state space V, with the transition matriz given by P = (DO’”)T A.

Definition 2.15 (First Passage Time). The first passage time is the random variable
Tij = min {t 2 0‘80 = i,St = ]}

The mean first passage time is given by its expectation, T;; = E [1;5].

Definition 2.16 (First Return Time). The first return time is the random variable

75 =min{t > 0[sg = 4,5, = j}

The mean first return time is given by its expectation, T;; =E [T;]
Definition 2.17 (Expected Commute Time). The expected commute time is the average
number of steps it takes for a random walk to go from one node to another and then back

to the source, i.e. C;; == T;; + T}

To keep the analysis simple, we will assume the graph is undirected. In this case, the

pairwise expected commute times and effective resistances in a graph are intricately related
[Cha+89, Theorem 2.1]:
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Theorem 2.3. The expected commute time between a pair of nodes in an undirected graph

G (V, &) is proportional to the effective resistance between them:

Cij = vol (G) Rij = vol (G) <LL + LL — 2LL)

2.2 Message-Passing Neural Networks

Graph Neural Networks (GNNs) form a special class of functions that operate on inputs of
the form (G, X)2, where G encodes the graph topology and X € RV*#" collects the node
features, each of size H®. The direction of edges indicate the direction of influence, i.e. if
(1,7) € &, then the representation of node j will be updated using the representation of
node ¢ in the previous layer. The output of a GNN depends on whether the task is node-
level or graph-level. For node-level tasks, L-layer GNNs, parameterized by the weights 6,
are of the form GNNy : (G,X) — Y € R¥*H"™  For graph level tasks, they are of the
form GNNy : (G, X) — y € RY ) For simplicity, we’ll assume that G is unweighted and

undirected.

Message-passing neural networks (MPNNs) [Gil+17] are a special class of GNNs which re-
cursively aggregate information from the 1-hop neighborhood of each node (Definition 2.6)

using message-passing layers of the form

2! = MPNN® (Z(-D G)

2.1)
_ o (., -1 o (=1 [ (-1 ~ R (0) (
= Upd (zi ,Agg (zi ,{zj D] GN(Z)})) Doz =X
where Agg(l) denotes the aggregation function, Upd(l) denotes the node update function,
and L is the depth of the MPNN. Since there is no specific ordering of nodes in a graph,
Agg(l) must be permutation invariant in the second argument, i.e. the ordering of the
neighboring nodes shouldn’t affect the aggregation output. For node-level tasks, a readout

function processes the final node representations individually to make predictions:

12(6.X) = {out (2(") : i e v}

2To keep things simple, we will ignore edge features in this thesis.
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For graph-level tasks, a permutation-invariant readout layer aggregates the final node rep-

resentations and makes a prediction:

fo (G, X) = Out ({Z§L> Lie v})

Common choices for the graph-level readout include feature-wise MAX, AVG or SUM pooling
layers; these are also common choices for downsampling in CNNs [GK20]. Of course, these

could be composed with other differentiable mappings to get a graph-level prediction.

Since an MPNN recursively aggregates information from the 1-hop neighborhood of each

node, an L-layer MPNN exposes a node to other nodes up to L-hops away.

Definition 2.18 (Receptive Field). The receptive field of an L-layer MPNN at node i € V

18 glven as
L

BY (i) =SV (i) ={j € V:dc(ji) < L}

=0

We use N (i) to denote BY (i) = N (i) U {i}, i.e. the set of nodes whose representations

are used to update the representation of node i in each layer.

This implies that nodes outside the receptive field at node ¢ do not influence its final rep-
resentation. Accordingly, an MPNN is said to under-reach if the task entails communication

of information between distant nodes, which the MPNN simply cannot facilitate [Bar+20].

2.2.1 Graph Convolutional Networks

[KW17] introduced the Graph Convolutional Network (GCNs), the first successfully exten-
sion of the concept of convolution to graph-structured data. Its layer-wise propagation rule

is given as

ZO0=|:| =0 (AZ(l_l)W(l)> . 79 =X (2.2)
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where A is a graph shift operator, i.e. Aij # 0 if and only if (7,4) € € == EU{(k, k) : k € V};
it is easy to see that the GCN is an MPNN. We will refer to A as the propagation matriz.

One popular choice for A is to use a symmetrically normalized augmented-adjacency
matriz [KW17|, which ensures that the information flow remains balanced across nodes,

improving gradient flow and convergence:

A=A+1Iy
D" — diag (AlN) — D" 4 Iy
f)out = dlag (AT1N> = DOUt + IN
- Lo\ L2 —1/2
Asym — <Dln) A <D0ut> (23)

In this case, the GCN corresponds to an MPNN with the layer-wise aggregation functions and

update functions given as
Agg“)(zq’” { Ve N () }) 270 = m{
jGN dm dout

Upd® (), i) = o (WiOhm(")

Another choice for propagation matrix is an asymmetrically normalized augmented-
adjacency matriz [HYL17], which corresponds to the standard form of Laplace smoothing
[Tau95]:

Ame = (D) A& 2

In this case, only the aggregation rule changes, and is given by
-1 - . ) 1 -
Agg! < ( ),{zg Dy EN(@)}) = Z ﬁzg 2
JEN(G) T

which simply corresponds to mean aggregation of the incoming messages. Several influen-
tial works have adopted this propagation rule [HYL17; Sch-+17; LHW18], and we will use

it for our theoretical analysis in Section 3.2.
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2.2.2 Graph Attention Networks

One shortcoming in the GCN architecture is that it uses only the degree distribution to
compute the weights for message aggregation; this limits its representational power. The
Graph Attention Network (GAT) [Vel+18| overcomes this by using attention mechanism
for computing weights from node features, allowing for more context-sensitive feature ag-

gregation. Formally, the aggregation functions of GAT are given as

Agg" (zgl_l), {Zgl V.jeN }) Z 04 Z (2.5)

jEN

where «;; are the learnt attention scores, given by

ozg-) = [softmax <{LeakyReLU <a, [W(l)zgl_l)

1))k e )]
l)z(l 1]>
(71~ >}>

Here, || represents a concatenation, a € R?# “ is a learnable vector, and the LeakyReLU
activation [MHN13] is

LeakyRel U <a, [W(l) §l 2

Zk@\“/(i) LeakyRelLU <a, [ WO l( 1)

x, x>0
LeakyReLU (z;v) = (2.6)
yr, x <0

for some fixed v € (0, 1), called the slope (hyper-)parameter. Like in [Vas+17], the self-

attention mechanism can be stabilized using multiple attention heads:

A ({505 e N 0}) = 3 ol =m™. keln
JEN(3)

K K
o0 (4 ) ) = 1o (W)
k=1 k=1

In our experiments, we set K = 2 in order to keep the computational load manageable,
while at the same time harnessing the expressiveness of the multi-headed self-attention

mechanism.
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2.3 DropEdge

DropEdge [Ron+20| was originally introduced to tackle the problems of over-fitting and
over-smoothing [LHW18; OS20], which limit the trainability of a deep GNN. It tackles both
of these problems together, allowing practitioners to train deeper GNNs on important graph

learning tasks.

2.3.1 The Algorithm

DropEdge is a random data augmentation technique that works by sampling a subgraph of
the original input graph, and using that for message passing [Ron+20|. Specifically, in each
forward pass, DropEdge perturbs the adjacency matrix by randomly dropping some edges,
independently and identically from a Bernoulli distribution with probability q. Accordingly,

the augmented adjacency matrix is given by

M ~ {Bern (1 — ¢)}""V

) (2.7)
A:MOA+IN

where o denotes the Hadamard product (element-wise multiplication). Then, the forward
propagation is performed with this perturbed adjacency matrix, as usual. DropEdge re-
duces over-fitting by randomly selecting a subset of neighbors for message aggregation,
which introduces uncertainty that prevents the model from relying heavily on the features
of specific neighbors. It also helps alleviate over-smoothing by reducing the number of
messages being propagated in the graph. At test-time, the standard practice is to simply
turn DropEdge off; if a normalized adjaceny matrix is used for propagation, then no re-
normalization of weights or activations is needed [Ron-+20] (unlike in the case of common
dropping methods [Sri+14]).

We refer to the DropEdge variant in Equation 2.7 as one-shot DropEdge — it corresponds
to using the same perturbed adjacency matrix in all layers. Indeed, the training can be

made noisier by sampling a different adjacency matrix for each layer:
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M® ~ {Bern (1 — ¢)}""

~ 2.8
AD =MYo A +1y (28)

In practice, layer-wise DropEdge outperforms one-shot DropEdge on the training set, but

the performance is comparable on the test set [Ron-+20, Section 5.2.3].

The common practice of turning DropEdge off during test-time has been shown to raise
the over-smoothing levels back up [XZ1.23, Figure 1|. Inspired by the Monte-Carlo Dropout
[GG16], another way of making predictions on the test-set is to perform multiple stochastic
forward passes with DropEdge turned on, and then averaging the predictions — we call this
the Monte Carlo DropEdge (MC-DE). On top of alleviating over-smoothing, this approach
also performs better than the regular test-time implementation [XZ1.23, Table 1].

2.3.2 Effect on Over-smoothing

Over-smoothing is a problem specific to GNNs, and it hinders model training by causing
the output representations to become independent of the input features, as the network
depth increases [LHW18; OS20]. The over-smoothing problem was first highlighted in
[LHW18|, where they showed that in the infinite width limit of a linear GCN, L — oo,
the node representations in a connected component, Y C V, converge to a fixed point in
RH (OO), which is determined only by the corresponding degree set {dl, e ,d|u|}. This is
clearly detrimental to the performance of GCNs, since the information in the node features
is completely lost. [0S20] extended these results to ReLU? networks with convolution
filters. They characterize over-smoothing as the exponentially fast convergence of the

node representations to a special kind of subspace, M C RV*# (OO), instead of a fixed point.

Definition 2.19 (Subspace). Let M = {UC|C € RM*} ¢ RN be an M-dimensional
subspace of RN where U € RN*M s orthogonal, i.e. UTU =1, and M < N.

Definition 2.20 (e-smoothing). We say that the node representations of a GCN are e-

smoothed if there exists an L € N such that ¥l > L, the hidden representation matrices,

3The ReLU activation is given by ReLU = LeakyReLU (-;0), and LeakyReLU is as in Equation 2.6.
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ZD | are at most € > 0 distance away from a subspace M that does not depend on the input
features X:

dy (2V) = inf [|Z0 —M]|, <e, VI>1L (2.9)

where ||-||  denotes the Frobenius norm.

Definition 2.21 (Relaxed e-smoothing Layer). Assume that the weights of a ReLU-GCN
are initialized such that their spectral norms are bounded, i.e. s; == ||W(Z)H2 <1,VIl. Gien

the subspace M and €, we define the relaxed smoothing layer as

log (¢/dnm (X))w
log s\

~

o= |

where dag 15 as in Equation 2.9, s = sup,ey 51, and A < 1 is the second largest eigenvalue

of the propagation matriz A = Asvm (Equation 2.3).

DropEdge can be viewed as a message passing reducer, i.e. it makes the graph topology
sparser, thereby reducing the extent of over-smoothing in deep GCNs. Following the setup
in [0S20], [Ron+20, Theorem 1| showed that using DropEdge allows for a higher number

of message-passing steps before a preset level of over-smoothing is reached:

Theorem 2.4 (DropEdge Reduces Over-smoothing). Consider the input graph G(V,E)
and the subgraph G' (V, &) obtained by removing some edges. Furthermore, let M and M’
denote the subspaces these graphs will encounter e-smoothing with respect to. Then, after

a sufficient number of edges have been removed, one of the following holds:

e The relazed smoothing layer increases, L (M, €) < L (M, €)

e The information loss decreases, N — dim (M) > N — dim (M’)

Although the exact details of the proof of Theorem 2.4 are not relevant to our work, we
wish to highlight that it relies on the fact that removing edges from a graph can only
increase the effective resistance between any two nodes (Theorem 2.2). In a way, DropEdge
reduces over-smoothing by increasing the effective resistances in the graph. In Section 2.4,

we will see how this observation hints at the negative effects of DroEdge on over-squashing.
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|[Ron+20] showed that DropEdge improves the performance of deep GNNs on a range of
graph learning tasks, including the citation networks Cora [McC+00], CiteSeer |[GBLIS|
and PubMed |[Nam-+12], as well as the Reddit social network [HYL17|. Moreover, it has
inspired the design of several newer dropping methods, like DropNode [Fen+20], DropGNN
[Pap+21|, DropAGG |[Jia+23], DropMessage [Fan+23| and Structure-Aware DropEdge
[Han+23|, which have significantly improved the performance of GNNs. Given its wide-
spread impact on GNN research, it is only natural to question its efficacy in different settings,

including its performance on long-range tasks.

2.4 Over-squashing

Another problem inherent to the task of modelling graph data using MPNNs is over-squashing.
In simple words, the topology of the input graph can result in bottlenecks, which causes
information from exponentially growing neighborhoods [CZS18| to be squashed into finite-
sized node representations [AY21]. This results in a loss of information as it is propagated
over long distances. Therefore, the MPNNs fail to capture LRIs in the graph, limiting their
applications to short-range tasks. On a variety of (synthetic and real-world) long-range
datasets, [AY21] showed that the MPNNs suffer from underfitting when the problem radius,
i.e. the range of interaction in the ground-truth, is large and the depth of the network is

comparable to it.

[Top+22; Bla+23; Di 423; Gio+24] have shown that over-squashing in a GNN is intri-
cately related to topological properties of the graph, such as the curvature of its edges, the
effective resistance between pairs of nodes and the expected commute time between them.
Optimizing for such properties, several graph rewiring techniques have successfully reduced
over-squashing [Arn+22; DLV22; Top+22; Bla+23; Gir+23; KBM23|, improving the per-
formance of GNNs on long-range tasks. Accordingly, in this section, we will introduce the
theoretical results characterizing the relationships between over-squashing and the input

graph’s topology. This will help motivate our theoretical analysis in Chapter 3.
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2.4.1 Sensitivity

[AY21]| empirically showed that MPNNs fail to communicate information effectively over long
distances, which results in poor performance on long-range tasks — a phenomenon they
coined ‘over-squashing’. These findings were theoretically studied in [Top+22|, wherein
over-squashing was characterized in terms of the Jacobian of the MPNN’s node-level repre-

sentations w.r.t. the input features:

Definition 2.22 (1-norm). The 1-norm of a matriz Q € RP1*P2 js defined as

Dy Dy

Q= >1Qil

i=1 j=1

Definition 2.23 (Sensitivity). Consider an L-layer MPNN and its input (G (V,E),X). The
sensitivity of a node © € V to another node j € V is defined as H(‘?sz)/axjH .
1

Over-squashing in an MPNN can be understood as low sensitivity between distant nodes,
i.e. small perturbations in a node’s features don’t effect other distant nodes’ representa-
tions. [Top+22| showed that the sensitivity between two nodes can be characterized using

the propagation matrix:

Lemma 2.3. Consider an L-layer MPNN with the aggregation functions given by
Agg(l) (Zglil): {Zglil) 1] € N@)}) = Z AijMSg(l) <z§lil),z§l71)>
JEN (i)

where Msg(l) denotes a differentiable message function. If the gradients of the message and
the update functions are bounded as ”VMsg(l)H < «a and HVUpd(l)H < B, VI € [L], then
1 1

the sensitivity of a node i € V to another node j € SW) (i) satisfies

ozY

< (aB)" (A")

1

]

In other words, given an MPNN with bounded gradients, the sensitivity between two

nodes can be studied using the corresponding entries of the matrix AL, [Bla+23, Lemma
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3.2] extended these results to all pairs of nodes in the graph, but assuming a strictly less

general form of the aggregation function:

Lemma 2.4. Consider an L-layer MPNN with the aggregation functions given by

Age® (2" {2V eN)}) = Y AyMsg? (2077)
JEN (i)

where Msg) denotes a differentiable message function®. If the gradients of the message

VMsg® ‘VUpd(l)‘ ,1} < 8,
1
Vi € [L], then the sensitivity of a node i € V to another node j € V satisfies

and the update functions are bounded® as

<« and max{
1

oz

Let’s do a sanity check: since Aij # 0 if and only if (i, 7) € g, <Al> ~ # 0 if and only
ij
if j € BY (7). Therefore, for j ¢ BY (i), Lemma 2.4 suggests the sensitivity of node i’s

representations to node j’s features is 0, as expected.

Manipulating the upper bound in Lemma 2.4, [Bla+23, Theorem 3.3] bounded the

sensitivity between two nodes with the effective resistance between them:

Theorem 2.5 (Sensitivity and Effective Resistance). Under the assumptions of Lemma 2.4,
and with A = Asym,

2 min {d;, d; } 1—u
where R;; denotes the effective resistance between the nodes i, j € V, and max {|psa| , |un|} <

ozt
an

1

w, where uy < ... < gy < g = 1 denote the eigenvalues of Asvm.,

One interpretation of this theorem is that when two nodes are connected by multiple short
paths (which leads to low effective resistance), the input features of one node have a strong

influence on the representation of the other node. This makes intuitive sense since a higher

4While a GCN is included in the class of MPNNs assumed in Lemma 2.3 and Lemma 2.4, a GAT is not.
®|Bla-+23] used the operator norm to define boundedness, but the result continues to hold for the
1-norm.
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number of short paths implies that there are multiple ways of information from one node
reaching the other, without getting lost due to over-squashing. The relationship between
effective resistance and sensitivity in Theorem 2.5 also suggests the use of total resistance

as a heuristic for the message passing rate in an input graph.

2.4.2 Influence Distribution

In this subsection, we will present a theoretical result which was not introduced in the
context of over-squashing but has nevertheless been influential in its analysis [Xu-+18]. We

start with some definitions to set up the theorem:

Definition 2.24 (Augmented Random Walk). An augmented random walk on an un-
weighted graph G (V,E) is a random walk on the augmented graph G (V,g), where

E=EU{(k,k):keV}

In other words, it is a Markov process on the state space V with the transition matriz given

by P — (D) A

Definition 2.25 (Influence Distribution). For an L-layer MPNN, the influence distribution

of node i is defined as

(L)
Cray) et
Zkev I (27 k) Zkev ‘

1

2" /akal

L (j)

We will assume that the input graphs are undirected and the MPNN is an L-layer
ReLU-GCN with the asymmetric propagation rule (Equation 2.4):

2 = ReLU (A»z- W) (2.10)

Observe that P = A®™_ since the in-degree and out-degree matrices of an undirected

graph are equal (Definition 2.7).
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Recall the definition of the ReLU non-linearity:

x, x>0
ReLU (z) =
0, <0

Clearly, the ReLU activation blocks the flow of gradients when the pre-activation value x is
non-positive®. Accordingly, we say that a neuron is active if the pre-activation it stores is
positive, else it is inactive. Similarly, any path in the (directed acyclic) computation graph

of a GNN is blocked if some neuron on the path is inactive.

Assumption 2.1. Say there are V;; paths in the computational graph going from the input
(

features x; to the final node representations ziL). Assume that each of these paths is active
with the same probability p, which is independent of the input features X and the model

parameters W . W),

This assumption was introduced to analyze the local minima of ReLU-MLPs [Kaw16|, and
has been recently used to study over-squashing in MPNNs [Di +23|. Moreover, under this
assumption, [Xu+18| showed that the influence distribution of a node i is equal to the

L-step transition probabilities in the augmented random walk.

Theorem 2.6. Given the MPNN in Equation 2.10, and under Assumption 2.1,
oz R I L ) L

i _ Aasym> W(l) _ (PL> W(l)
0%, ( ( ) |7 E ij P E

ij
Corollary 2.1. Since E [821@)/8)(]-] 18 proportional to (PL> ~, the influence distribution

ij
is given by I; (j) = (PL>

E

v

2.4.3 Jacobian Obstruction

While the bounds in the previous subsections provide important insights into the relation-
ship between sensitivity and the graph topology, they don’t allow us to reliably predict how

much more sensitive a node’s representation is to its own features than to its neighbors’

6 Although ReLU is not differentiable at x = 0, a sub-gradient v € 9ReLU (0) = [0, 1] can be used instead
for optimization; the PyTorch implementation uses v = 0.
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features. To that end, we will present the Jacobian obstruction as a measure of excess

sensitivity.

In this section, we will assume the GNN to be an L-layer MPNN with the aggregation

functions of the form
Ae® (7D {00 .5 o Ar (i B A gD
gg z; , Zj S (Z> = E zyzj

and the update functions of the form

D — Upd® (zﬁl‘”,Agg(”( (=) { 27V EN(@')}))
— RelU (W“)( (- )—i—caAgg(l)( (i~ ”,{z;’*” i eN(i)})))
= ReLU | WW® crzglfl)—i-ca Z Aijz(-lfl) (2.11)
JEN(4)

where ¢, > ¢, > 0, A = Asm (Equation 2.3) and WO are weight matrices of appropriate

size.

Consider the following quantity which measures the excess sensitivity of the final rep-
resentation of node 7 to some intermediate representation of node ¢ compared to the cor-

responding intermediate representation of node j [Di +23|:

1 8Z(L) 1 8Z(L)

d; Bzy) - v did; @zgl)

The normalization stems from our choice of the propagation matrix. The reverse triangle

IO (i, 5) =

lel[L]

equality tells us that

1 9z
13O = &
) = ) 0) /_ (l)
1 asz) 1
d. 0)
0z, 8zj .
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If the MPNN cannot effectively propagate information from node j to node 7, we would ex-

pect z( ) to be more sensitive to z Y than to z ) [Di 423, Theorem 4.1], i.e. Z(L)/azgl) >
1

(‘3sz / 8zj H . In that case, without making any assumptions about d; and d;, we would
1

expect the second inequality above to be an equality, so that the norm of J® (1,7) is
an upper bound on the excess sensitivity. This makes J® (i, j) suitable for measuring
over-squashing. Indeed, we can follow a similar intuition to define a symmetric quantity

measuring the 2-way communication between a pair of nodes [Di +23|:
IO (i, 5) =39 (0,5) + IV (j,0)

Definition 2.26 (Symmetric Jacobian Obstruction). In an L-layer MPNN of the form Equa-

tion 2.11, the symmetric Jacobian obstruction between two nodes i,j € V is given by

L
=330,
=0

Observe that O accounts for the sensitivity of the final representations w.r.t. all inter-
mediate representations, and not just the input features. [Di +23, Theorem 5.5| showed

that H() (1,7) H can be bounded using the effective resistance between the nodes:
1

Theorem 2.7 (Jacobian Obstruction and Effective Resistance). Assume that the layer-

wise updates of the GNN are as in Equation 2.11, and Assumption 2.1 holds. Let

p=max||[WO,  and v = min [WO,

If w(e, + co) < 1, then Jeg, independent of the choice of nodes, such that

w(i-o0(0) (L) Ry <0 < (2 )Ry

where o (L) denotes a term decaying exponentially in L.

This result can be interpreted as follows: higher effective resistance between two nodes
implies a large Jacobian obstruction, i.e. the nodes have low (relative) sensitivity to each
other. Importantly, the bounds become tighter as L grows. Therefore, in deep MPNNs, the

effective resistance can reliably characterize the over-squashing levels.
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2.5 Related Works

This section is dedicated to the discussion of works that are adjacent to ours. These are
not too important for understanding our contributions, but are relevant for understanding
their significance. In Section 2.5.1, we present algorithms designed for alleviating over-
smoothing and training deeper GNNs. The purpose of this subsection is to present a list of
methods that can benefit from a similar analysis as we perform for DropEdge in this work.
In Section 2.5.2, we present rewiring techniques developed for addressing over-squashing.
The purpose is to highlight a common principle in all these methods, which is that edge
addition is necessary, or rather, edge deletion by itself is likely harmful — this points towards
a need for evaluating DropEdge on long-range tasks. In Section 2.5.3, we present methods
designed for a unified treatment of the two problems. This is to highlight the trade-off
between over-smoothing and over-squashing, and to further emphasize the need for re-
evaluating the methods in Section 2.5.1. Furthermore, the techniques in this section can
inspire future works aimed at adapting the algorithms in Section 2.5.1 to simultaneously
address the over-squashing problem. Finally, in Section 2.5.4, we present a collection of
long range graph benchmarks that can be used to reliably conclude the efficacy of methods

designed for tackling the over-smoothing and over-squashing problems.

2.5.1 Treating Over-smoothing

Over-smoothing prevents deep MPNNs from learning informative node representations that
can predict the true labels with a good precision. This can limit how deep architectures
can go, keeping them from modelling LRIs in, e.g. heterophilic graphs, wherein the labels
of neighboring nodes tend to differ [Zhu+{20]. In an effort to overcome such limitations, a
large set of tools, including DropEdge [Ron+20], have been proposed for alleviating over-
smoothing; we will introduce some of them in this section. An analysis of their effects on

over-squashing is warranted, similar to the one we will perform for DropEdge.

We will start by quickly introducing two efficiently computable measures of over-

smoothing. The first is based on the concept of the Dirichlet energy on graphs. For
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representations in layer [, it is defined as

E (z")

7,])65

That is, it computes the sum of squared Euclidean distances between the representations
of all adjacent node-pairs (followed by normalization). Clearly, a small Dirichlet energy
would imply that the representations are too similar to each other and are therefore,
likely uninformative [CW20b|. The other measure is the Mean Average Distance (MAD)

[Che+20a], which uses the cosine distance in place of the squared Euclidean distance:

<<l> Z<>>
i 0

1
,u(Z(l)):N > 1—‘ (0‘ ‘z(l)
2

(i4)€€ Z j
In the case of scalar features, MAD computes to 0 as long as all the features are of the same

' ‘ 2

sign. This makes MAD a problematic measure [RBM23]. Nevertheless, it is commonly used

to provide empirical support for strategies developed for tackling over-smoothing.

A popular choice for reducing over-smoothing is to regularize the model. Recall that
DropEdge implicitly regularizes the model by adding noise to the learning trajectory (Sec-
tion 2.3). Graph Drop Connect (GDC) [Has+20| combines DropEdge and DropMessage
[Fan+ 23| together, resulting in a layer-wise sampling scheme that uses a different sub-
graph for message-aggregation over each feature dimension. Another powerful form of
implicit regularization is feature normalization, which has proven crucial in enhancing the
performance and stability of several types of neural networks [Hua+20]. Exploiting the
inductive bias in graph-structured data, normalization techniques like PairNorm [ZA20],
Differentiable Group Normalization (DGN) [Zho}20] and NodeNorm |[Zho21b| have been
proposed to reduce over-smoothing in GNNs. On the other hand, Energetic Graph Neu-
ral Networks (EGNNs) [Zho+21a] explicitly regularize the optimization by constraining the

layer-wise Dirichlet energy to a predefined range.

In a different vein, motivated by the success of residual networks (ResNets) [He+16] in
computer vision, [Li+19] proposed the use of residual connections to prevent the smoothing

of representations:

Z® =79 + MPNN® (Z(7Y G)
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This update rule successfully improved the performance of GCN [KW17] on a range of
graph-learning tasks. [Che+20b| introduced GCNII, which uses skip connections from the

input to all hidden layers. Its propagation rule is given by
70 _ & [((1 — o) Avmg(-1 4 amX) (1= D) Iy + 5<Z)W<Z))}

where a® and 8 are hyper-parameters. This layer wise propagation rule has allowed for
training of ultra-deep networks — up to 64 layers. Impressively, GCNII actually benefits
from increasing network depth, even on (homophilic) citation networks [YCS16]. Some
other architectures, like the Jumping Knowledge Network (JKNet) [Xu+18] and the Deep

L
Adaptive GNN (DAGNN) [LGJ20], aggregate the representations from all layers, {zl@}

before processing them through a readout layer, Out.

)
=1

2.5.2 Treating Over-squashing

Over-squashing of information being propagated over long distances impedes the capacity
of an MPNN to model LRIs. This can be detrimental to the performance of MPNNs on tasks of
practical importance, such as those in biochemistry [Irw-+12; Ram+14; HYL17; Mor+20].
In the previous sections, we saw that over-squashing is significantly affected by the graph
topology, such that it is harder for poorly connected nodes to communicate with each other.
In this section, we will review some of the graph rewiring methods proposed to address the
problem of over-squashing. Particularly, we wish to emphasize one commonality between

all these methods — edge addition (sometimes along with edge removal) is necessary.

Graph rewiring refers to modifying the edge set of a graph by adding and removing

edges in a systematic manner:
Rew (G(V,€)) =G (V, %" = (E\ £°™) U &)
where £°™ C £ and £2 C (V x V) \ €. ER®™ will be referred to as the rewired edge set.
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We can extend the MPNN framework in Equation 2.1 to account for this rewiring:

2’ = Upd® (', Agg (2/ " {2l je N ()}),

AggRew") <z§l71), {zg-l*l) 1§ € NRW (z)}))

where N'Re" (i) denotes the 1-hop neighborhood of node i in ER®". In a special case, which
includes many of the rewiring techniques we will discuss, Agg = 0, i.e. the original topology

is discarded and only the rewired graph is used for message-passing.

Spatial rewiring methods use the topological relationships between the nodes in order
to come up with a rewiring strategy. That is the graph rewiring is guided by the objective
of optimizing some chosen topological properties. For instance, [AY21] introduced a fully-
adjacent (FA) layer, wherein messages are passed between all nodes. GNNs using a FA layer
in the final message-passing step were shown to outperform the baselines on a variety of
long-range tasks, revealing the importance of information exchange between far off nodes
which standard message-passing cannot facilitate. [Top+22| proposed a curvature-based
rewiring strategy, called the Stochastic Discrete Ricci Flow (SDRF). It aims to reduce
the “bottleneckedness” of a graph by adding suitable edges, while simultaneously removing
edges in an effort to preserve the statistical properties of the original topology. [Bla+23]
proposed the Greedy Total Resistance (GTR) technique, which optimizes the graph’s total
resistance (Definition 2.13) by greedily adding edges to achieve the greatest improvement
(Theorem 2.2). One concern with graph rewiring methods is that unmoderated densifica-
tion of the graph, e.g. using a fully connected graph for propagating messages, can result
in a loss of the inductive bias the topology provides, potentially leading to over-fitting. Ac-
cordingly, [Gut+23| propose a Dynamically Rewired (DRew) message-passing framework
that gradually densifies the graph. Specifically, in a given layer [, node 7 aggregates mes-
sages from its I-hop receptive field, BY (i) (Definition 2.18), instead of the standard choice
N (i) = BW (7). This results in an improved communication over long distances while also

retaining the inductive bias of the shortest distance between nodes (Definition 2.5).
Spectral methods, on the other hand, use the spectral properties of the matrices en-

coding the graph topology, e.g. the adjacency matrix or the Laplacian matrix, to design

rewiring algorithms. [Arn+22| propose a differentiable graph rewiring layer based on the
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Lovész bound [Lov93, Corollary 3.3]:

1 1 2
R, — [—+—)|<
‘ " (dz‘ +dj>' ~ Aadmin

[Ban+22] introduced the Random Local Edge Flip (RLEF) algorithm, which draws in-
spiration from the “Flip Markov Chain” [MS05; Fed+06]. A sequence of such steps can

convert a connected graph into an expander graph — a sparse graph with good connectivity
(in terms of Cheeger’s constant) — with high probability [MS05; Fed+06; All+16; Coo+19;

Gia22], thereby enabling effective information propagation across the graph.

Some other rewiring techniques don’t exactly classify as spatial or spectral methods.
For instance, Probabilistically Rewired MPNN (PR-MPNN) [Qia+24]| learns to proba-
bilistically rewire a graph, effectively mitigating under-reaching as well as over-squashing.
Finally, [GYS23] proposed connecting all nodes at most r-hops away, for some r € N, and

introducing positional embeddings to allow for distance-aware aggregation of messages.

2.5.3 Towards a Unified Treatment

The problems of over-smoothing and over-squashing seem to be directly related, with the
former arising when training deep GNNs and the latter when such deep GNNs are used for
modelling LRIs. However, several studies have shown that an inevitable trade-off exists
between the two, meaning that optimizing for one will compromise the other. For instance,
[Ngu+23, Proposition 4.3] showed that positively curved edges” in a graph contribute
towards the over-smoothing problem. Formally, if the all the edge curvatures in a graph are
bounded below by a sufficiently high constant, then the Dirichlet energy of the node-level
representations is expected to decay at an exponential rate. Consequently, graphs with a
high number of positively curved edges are expected to suffer from over-smoothing. On the
other hand, as discussed earlier, negatively curved edges create bottlenecks in the graph,
resulting in over-squashing of information [Top+22; Ngu+23|. To address this trade-off
between the two problems, Batch Ollivier-Ricci Flow (BORF) [Ngu+23] adds new edges
adjacent to the negatively curved ones, and simultaneously removes positively curved ones.

In a similar vein, [Gir+23| demonstrated that the minimum number of message-passing

"In terms of the Ollivier-Ricci Curvature [O1109]
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steps required to reach a given level of over-smoothing is inversely related to the Cheeger’s
constant, hg. This again implies an inverse relationship between over-smoothing and over-
squashing. To effectively alleviate the two issues together, |Gir+ 23| proposed the Stochastic
Jost and Liu Curvature Rewiring (SJLR) algorithm. SJLR adds edges which result in high
improvement in the curvature of existing edges, while simultaneously removing those that

have low curvature.

Despite the well-established trade-off between over-smoothing and over-squashing, some
works have successfully tackled them together despite only adding or removing edges. One
such work is [KBM23|, which proposed a rewiring algorithm that adds edges to the graph
but does not remove any. The First-order Spectral Rewiring (FoSR) algorithm computes, as
the name suggests, a first order approximation to the spectral gap of L™, and adds edges
with the aim of maximizing it. Since Ay directly relates to hg through Cheeger’s inequality,
this directly decreases the over-squashing levels. Moreover, [KBM23, Figure 5| empirically
demonstrated that addition of (up to a small number of) edges selected by FoSR can
lower the Dirichlet energy of the representations. Taking a completely opposite approach,
CurvDrop [Liu+23] adapted DropEdge to remove negatively curved edges sampled from
a distribution proportional to their curvatures. CurvDrop directly reduces over-squashing
and, as a side benefit of operating on a subgraph (Theorem 2.4), also mitigates over-

smoothing.

2.5.4 Long Range Graph Benchmarks

Most research works, regardless of their objectives, perform evaluations on popular datasets,
a good number of which are short-range tasks — either they are small world graphs (on
average, dg (i,7) o log N), they have high homophily (labels of nearby nodes are similar),
or they are simply modelled better by shallower networks®. Examples of such datasets are
citation networks [YCS16], social networks [LM12; HYL17] and product recommendations
networks [McA+15; She+18]. On short-range tasks, deep models need not harness the full

extent of their expressivity — they can simply fit to the signals local to each node. There-

8 Admittedly, this is an unreliable judgement criteria since without having alleviated vanishing gradients,
over-smoothing and over-squashing, we cannot conclude whether performance degradation with increasing
depth is due to model-dataset misalignment, or simply due to high optimization error.
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Figure 2.2: Topology of the graphs used in the Ring, Crossed Ring and Clique Path
Transfer tasks. Figure from [Di +23].

fore, the ability to train deep GNNs, i.e. preventing loss of expressiveness as more layers are
stacked, is not sufficient to conclude that they are capable of capturing LRIs. To test for

that, we need to evaluate the algorithms on long-range datasets.

Unfortunately, it is not easy to conclude if a graph-learning tasks entails modelling
of LRIs. Synthetic datasets help overcome this challenge by allowing us to manually
control the range of interaction in the underlying ground-truth. [Mat-+19] proposed 3
datasets to evaluate if GNNs can capture important LRIs in the graph. The first one
was a task of finding the unique path connecting two nodes in tree structured graphs of
varying sizes (up to a 100 nodes). The second was a maze solving task, which is arguably
more difficult to solve. Specifically, some nodes in a grid were labelled as ‘walls’, and
the task entailed identifying an un-blocked path connecting a source node to a target.
Finally, they introduced circuit graphs, which were derived by labelling the edges as wires,
resistors or batteries; the goal was to estimate the voltage at each node. [SGB20| proposed
the Shortest Path Prediction task in randomly generated graphs. More recently, in an
attempt to demonstrate the over-squashing phenomenon, [AY21] introduced the Neighbors
Match problem, wherein a target node needs to be matched with one of several source
nodes, such that their neighborhoods match. [Bod+21] introduced the Ring Transfer
task, wherein a source and a target node are placed at diametrically opposite ends of a
k-cycle, and the goal is to transfer the one-hot encoded label of the source to the target. [Di
+23| extended the Ring Transfer task to other graph topologies — the Crossed Ring and
the Clique Path — without changing any other settings; Figure 2.2 shows the topologies
of the graphs used in these datasets. The Color Connectivity task proposed in [RW21]
requires the model to predict whether a labelled subset containing 50% of all nodes forms
one connected component or two disjoint ones. Since the tasks above are completely
synthetic, the conclusions drawn from them remain somewhat unreliable. To add some

level of realism to the tasks, [Gio+24] introduced SyntheticZINC, which uses molecular
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graphs from the ZINC chemical dataset [[rw+12]. The node features and the graph labels

are set to control the level of mixing in the ground-truth; see Section 4.2.1 for more details.

Several real-world datasets have also been identified as suitable for testing the effective-
ness of methods aimed at alleviating over-squashing (and, in general, learning LRIs). For
instance, |Lim+21| propose 7 datasets for graph machine learning evaluation — YelpChi
[Muk+21|, Twitch-explicit [RAS21|, deezer-europe [RS20|, Facebook100 [TMP12],
Pokec [LK14]|, ogbn-proteins and arXiv-year [Hu+20]. Reportedly, these datasets have
low homophily scores and therefore, models need to learn more than just local infor-
mation in order to perform well on them. The newly introduced Long Range Graph
Benchmark |[Dwi+23| includes 5 new large-scale graph datasets, which are derived from
previously existing datasets: PascalV0OC-SP, where PascalVOC refers to The PASCAL vi-
sual object classes challenge [Eve+10] and SP stands for super-pixels, COCO-SP |Lin+14],
PCQM-Contact [Hu+21], Peptides-func and Peptides-struct [Sin+15]|. The sheer scale
of these datasets becomes evident when considering their statistics. For instance, COCO-SP
contains 123.3K graphs with an average of 477 nodes and 2.7K edges, while PCQM-Contact
features 529.4K molecular graphs with an average of 30 nodes and 61 edges. In contrast,
the popular citation networks Cora [McC-+00], CiteSeer |[GBLI8| and PubMed [Nam+12]
have a total of 2.7K, 3.3K and 19.7K nodes, and 5.4K, 4.7K and 44.3K edges, respectively.
These datasets provide a crucial benchmark for evaluating the performance of GNNs, par-

ticularly in scenarios where LRIs challenge traditional message-passing algorithms.
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Chapter 3

Theory

In Section 2.5.2, we saw that most rewiring methods targeted at alleviating over-squashing
add edges in order to reduce the bottleneckedness of the graph. Moreover, in Section 2.5.3,
we noted a trade-off between over-squashing and over-smoothing. Interestingly, DropEdge,
which was originally proposed to alleviate over-smoothing, only removes edges from the
original topology. This raises concerns about the effects of DropEdge on over-squashing in
GNNs.

Recall the intricate relationship between over-squashing and effective resistance, as
discussed in Section 2.4.1 and Section 2.4.3. These results motivated us to study the effect
of DropEdge on effective resistance in a computational graph. However, this is not straight-
forward endeavour. To see that, first consider the case of one-shot DropEdge (Equation 2.7)
— in this scenario, the expectation (over DropEdge masks) of the effective resistance is
infinite because DropEdge disconnects any two nodes with a non-zero probability. This
renders the measure uninformative. The same happens with the expected commute time.
On the other hand, in the case of layer-wise DropEdge (Equation 2.8), the notion of expected
effective resistance is meaningless. However, we can compute the expected commute time
for a random walk, where edges are randomly dropped at each step; we call this the

DropEdge random walk.

The rest of this chapter is organised as follows. In Section 3.1, we introduce the
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DropEdge random walk and show that its expected commute times are larger than those
of a regular random walk, suggesting that DropEdge might actually aggravate the over-
squashing problem. We study this effect in detail in Section 3.2. Specifically, in Sec-
tion 3.2.1 and Section 3.2.2, we present novel theoretical results characterizing the nega-
tive effects of DropEdge on sensitivity in linear GCNs. We then extend these findings to
nonlinear MPNNs in Section 3.2.3, building on the analysis from Section 2.4.1. Lastly, in

Section 3.2.4, we show that our conclusions also apply to Monte Carlo DropEdge.

3.1 DropEdge Random Walk

Consider a connected, undirected graph G (V, £), with adjacency matrix A, degree matrix
D and (unnormalized) Laplacian matrix L. The computation of expected commute time in
a random walk (Theorem 2.3) has only one source of randomness — in the choice of the edge
traversed at each step. Here we add another source of randomness to this walk by randomly
dropping edges with probability ¢ at each step of the walk; we call this the DropEdge(q)
random walk. To account for the possibility that at iteration ¢, all the edges adjacent to
s; may be dropped, we assume that the walk simply stays at s; for that iteration. Going
forward, we assume g € [0,1), since ¢ = 1 leads to the degenerate case where the random
walk fails to leave the start node, and all commute times between two different nodes are

trivially equal to oo.

Lemma 3.1. The transition matriz of a DropEdge(q) random walk on G is given by
P@ = (Iy — ¢°) DA + ¢°Iy

where ¢° = diag (qdl, e ,qu).

Proof. First, we derive the transition probabilities marginalizing out the randomness from

DropEdge. If nodes ¢ and j are connected, then
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k=0
di—1
1 < d; ) k+1 , \di—k—1
= — (1-9)"" ()"
i = k41
d
1 — (di ko, Ndi—k
- = 1— i
(Va0
=1
1—q%
— 3.1
) (3.1)

where my ~ Bern (1 —¢) and M; ~ Binom (d; — 1,1 —¢q). If i = j, the random walk
stays at node i with an additional probability ¢% — the case where all edges adjacent
to node ¢ are dropped. This can be seen as a weighted sum of the original transition
probabilities Pg.)) = Ay;/d; = L™ and self-transitions Pfj = 0;;, with weights 1 —¢% and
q%, respectively, where § denotes the Kronecker-delta. The transition matrix is given by
P@ — (IN _ qD) PO 4 qDPS
= (In—¢°)D'A + ¢y

Lemma 3.2. The stationary distribution of the DropEdge(q) random walk on G is given
by

al — 1 d do dn
f@) [1—¢t  1-g® 7" 1-giN

where the scaling factor B9 is given as




Proof. We begin with the stationarity condition:

a’PW = 77 — 0% nl [IN — P(q)]
— " Iy = (PO +° (L~ P)]
™

" (Ty = ¢°) (v = PY)

Since the column sums of the (in-degree) graph Laplacian are 0,

0% =14L
=1y (D - A)
= 13D (Iy — P)
—|di d . dx| (v - P©)

Since the graph is connected, there is only one left-eigenvector of Iy — P(© corresponding

to the eigenvalue 0. Hence,

1
' (Iy—¢°) === |di dy ... dy
Bla)
1
T _ d d d
" T 30 [1—$d1 e 1—%}

for some constant 3@ € R*. Since 7 denotes a probability distribution,

Ny
B(Q):Z ld-
i=1 1 —qg%

Theorem 3.1 (Mean First Passage Time). The expected first passage time (Definition 2.15)
of a DropEdge(q) random walk on G is given by

N

T, = [(L}j _ LL) S (Lj.k - L;fk>

k=1
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Proof. Using Definition 2.16, we have the mean return times given by

T, =P 1+ ZP,(.,‘? (T, +1) =1+ ZP,(.,‘?T,;
k4 k#j

where P@ denotes the transition matrix, as derived in Lemma 3.1. Let E = 1.y and
define T} = diag (T"). Then,

Tt =E+PY (T" - T)) (3.3)
With the stationary distribution mr, satisfying #7P@ = T we can derive T} as
Tt =7"1y - 1% + 7P (T - T)
=15+ 7' TT — 2T}
= 1y = Tjﬂ'
1

™

7

Moreover, since the mean hitting times (Definition 2.15) satisfy T = T+ —T, Equation 3.3

becomes

T+T;=E+PYT
— (Iy-PY)T=E-Tj
— D (Iy—-PY)T=D(E-T}) (3.4)

Define K =D (IN — P(q)). K relates to LL as

K =D — DPWY
=D - (Iy —¢°) A —Dg”
=(In—-¢°)(D-A)=(Iy—¢°)L

It is easy to verify that K = LT (IN — qD)_l. Left-multiplying Equation 3.4 by K we get

K'D(E-T]) =K'KT =T - 1yu" = T =K'DE - K'DT} + 1yu”
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where u” = 1/N - 14T is proportional to the column sums of T. This means that

> 1

k=1 J

Since the diagonal of T is 0,

N 1
> Khdi +Kld; - —
— ™

Plugging this back into Equation 3.5,

il - 1
:kzl ~Kld; - ﬂ——kZK}kkorK}jdj.w—j
N
_ (KT ) = (K}k — Kjk> d

J k=1

Finally, substituting KT = LT (Iy — qD)f1 and using Lemma 3.2, we conclude

Tij = e [(ij - LL’) - i Tk (ij - ij)
k=1

]

Corollary 3.1 (DropEdge Commute Time). The expected commute time of a DropEdge(q)

random walk on G is given by

9 _ gla) (LL. +L1 - 2ij)

Proof. This is an immediate consequence of Definition 2.17 and Theorem 3.1. [
Note that if ¢ = 0, we recover Theorem 2.3. Moreover, in the limit ¢ — 1, we have
ng) — oo for i # j, as expected.

Corollary 3.1 suggests that DropEdge scales up the commute times between every pair

of nodes, by a factor which depends only on the degree distribution of the graph and the
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DropEdge probability. One might think that it is obvious for C;; to increase given that re-
moving any edge increases R;; (Theorem 2.2) and that the two quantities are proportional
(Theorem 2.3), C;; = vol (G) R;;. However, removing edges also decreases the proportion-
ality constant, vol (G) = 2|€|. Therefore, the pairwise commute times need not increase
when edges are removed. See Figure 4.1, for example — graph 2 is a connected subgraph of
graph 1, yet all the commute times from the source (node 0) are lower in graph 2 than in
graph 1. Corollary 3.1 does not suggest that commute times in subgraphs are higher, but
instead that if i.i.d. subgraphs are used in each step of the walk (cf. layer-wise DropEdge

in Equation 2.8), then the expected commute times increase.

3.1.1 Inspecting the Scaling Factor

Let’s take a closer look at the individual terms in Equation 3.2 and make a few observations.

Start by setting
d;
=1

6((1)

1. ﬁi(q) is an increasing function of ¢. That is, the contribution to 8 coming from
each node monotonically increases as DropEdge probability is increased. Precisely

speaking, for ¢ € (0, 1), the partial derivative w.r.t. ¢ is given by

%{;) _ <5§q))2qdi_l <0

2. Similarly, the second derivative w.r.t. ¢ is given by

2 5(9)
T =2 (07) @) = (5)

This implies that the commute times become increasingly sensitive to the DropEdge

probability as it is increased from 0 to 1.

3. The relative change w.r.t. a NoDrop baseline (¢ = 0) is lower for higher d;:

<0

B@(Q) _ 1 . B! 6@(@ _ qdi In q
B0 1-¢t T adi\BV ) (1-q%)

)
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Figure 3.1: The effect of node degree, d;, and DropEdge probability, ¢, on the individual
terms in Equation 3.2.

Note that the relative change in commute times, CZ(-?) / Cg-)), is proportional to 5@ /3(0)
This means that DropEdge has a smaller effect on commute times in graphs with bet-

ter connectivity (in the sense of having lesser nodes with low degree).

4. Similarly, the absolute change is also lower for higher d;:

1
()
1—q%

di diglng  q% (1+1Ing% — ¢%)

9 (@ _ »0)_ 4 _

This intuitively makes sense since the probability of the random walk transitioning
out of a node (i.e. not having all edges adjacent to it being dropped) is higher when
the node’s degree is high.

Figure 3.1 shows how ﬁi(Q), BZ-(q) - BZ-(O) and B,L-(q) / BZ-(O) vary as a function of the DropEdge
probability, for different values of d;.

Directly analyzing the effect of the degree sequence {d1, ..., dy} on 3@ is not as straight
forward. Therefore, we do so empirically using the molecular graphs in the Proteins
[DDO03] and MUTAG [KMBO05| datasets. Figure 3.2 shows the distributions of the ratio of
scaling factors 51.@ / ﬂi(o). As expected, the distribution shifts to the right as the DropEdge
probability is increased, implying that more and more graphs are expected to significantly

suffer from increasing commute times.
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Figure 3.2: Distribution of the scaling factor 3@ /5 over the Proteins dataset.

3.2 Sensitivity in a DropEdge Model

In Section 3.1, we studied the effect of DropEdge on commute times, noting that a high
DropEdge probability increases them between all node pairs. Now, we study its effects
on the sensitivity of one node’s representations w.r.t. another node’s input features. For
this experiment, we use randomly initialized 6-layer GCNs with each layer’s width set to
64, and ReLU activation after each message passing step. Molecular graphs are sampled
from the Proteins and the MUTAG datasets, discarding those that are disconnected, and

the following quantities are computed:

1. the pairwise commute distances C;;, as in Theorem 2.3, and

(6)

i

, where z; ' represents the representation of

aZEG)/aXJ
1

node ¢ in the 6™ layer and x; represents the input features of node j.

2. the pairwise sensitivities, ‘

The node pairs (i,j) are binned by rounding their corresponding commute times to
the nearest multiple of 40, and the mean of the sensitivity is computed for each bin.
Figure 3.3 shows the sensitivity values against the (binned) commute times. First off, we
observe an exponential rate of decay in sensitivity as distance between the nodes ¢ and
J increases, in agreement with [AY21; Top+22|. Secondly, DropEdge increases the decay

rate, so that the sensitivity between nodes with high commute times is reduced, as expected
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Figure 3.3: Sensitivity versus commute times in Proteins and MUTAG datasets. The error
bars corresponds to one standard deviation w.r.t. the initialization of the GCN.

from Corollary 3.1. Note that this reduced sensitivity between nodes with high commute
times may be beneficial in some cases. For example, when the task entails learning only
short-range interactions, high DropEdge probability can decrease harmful redundancy in
the model [Di +23]. Unexpectedly, DropEdge also seems to increase the sensitivity between
node pairs with small expected commute times. Note that this does not contradict the
results in [Di +23; Gio+24], since those results gave bounds on over-squashing levels, and
studying the effect of DropEdge on commute times cannot precisely predict the effect it

would have on sensitivity in GNNs.

3.2.1 1-Layer Linear GCN

To make sense of the observations in Figure 3.3, we perform a theoretical analysis of the ex-
pectation — w.r.t. DropEdge — of sensitivity in a linear GCN. Consider an input (G (V, £) , X),
where X € RV*H® " Ag a starting point, we consider a 1-layer linear GCN with an asymmet-
rically normalized propagation matrix, Assym (Equation 2.4). Specifically, the individual

feature vectors are given by
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M® ~ {Bern (1 — ¢)}"""

Theorem 3.2. In the case of a 1-layer linear GCN with A = Awvm using DropEdge

1. increases the sensitivity of a node’s representations to its own input features, and

2. decreases the sensitivity to its neighbors’ features.

Proof. Since derivatives and matrices are linear operators, the Jacobian of ZE ) w.r.t. X, is

1)
92" _ AW
an K

Sensitivity is given by the 1-norm of the Jacobian (Definition 2.23). In a NoDrop model
(¢ = 0), this would simply be given by

oz

- 1
= AQ WO, = A WO,

1

where d; is the in-degree of node i. In a DropEdge model (¢ > 0), we are interested in the

expected sensitivity, marginalizing out the randomness from DropEdge:

0zY
an

= Exor [A] [[WO,

EM<1)~{Bern(1—q)}NXN ”
1

Since we are not considering the effect of DropEdge on the learning trajectory, we can ignore
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the weight matrix and simply compare the respective entries in the (expected) propagation
matrix. Let’s look at Eyq) [AS )], first. Recall that a self-loop is added to the graph after
the edges are dropped, and then the (asymmetric) normalization is performed. In other

words, the self-loop is never dropped. Following Lemma 3.1, we have

5
2
>

I
—
|
2

e
3
E
Y
|

241—®§f<%;1)@—Qf@Wkl(g%g)

d;—1 i dl — 1) ket gkl
B kzzo (k+2§!(d,; —)k;—l)! (=g (@)™ (k+1)
-3 <méj:;1¢y“—qf*wﬁ““wk—n

k=2 \ /AT :

1 W1 bk
:di(di+1)(1—q)k:2( 2 )(1—61) () (k—1)
T d; (d; + i) 1—q) [(di +1) (1= q) — ¢"*]
B % (1 ~ Emo [A;’l )} (3.8)
l 1

= d; +1

This proves the second part of the theorem.
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We conclude that DropEdge reduces the sensitivity of a node’s representation to its
1-hop neighbors’ features. In fact, in the limit of ¢ — 1, i.e. when all the edges are almost
surely dropped, the GCN completely ignores the underlying topology and the sensitivity

between the neighbors disappears, reducing the model to an MLP, as expected.

3.2.2 L-Layer Linear GCN

Now, consider an L-layer GCN in which DropEdge masks are sampled identically and inde-

pendently in each layer (as is commonly done in GNN training):

Then, the final node representations are given by
7 = AXW e RV
where A = H1L:1 AD e RVN and W = Hlel WO e RE=HE)
Lemma 3.3. The expected sensitivity between nodes © and j in an L-layer linear GCN with
DropEdge probability q s

ozY
an

Eni, v [ = (PL>U W,

1
where P = Eyp [A(l)} 15 the expected propagation matrix.
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Proof.

(L) Al = oz'P —— oz" n T
2, =Y Ayx,W = 8;9 =AWV = 6;9 = Ay |[W|,
J=1 1
oz" f =
= Epmoo, v al = Eynor o [Ay] [[W]],
Xj 1

Using the i.i.d. assumption on the distribution of DropEdge masks, the expectation of A
is given by

L
_ ~ ~ L .
Envo) v [A} = Epmo . mw [H AD| = (EM [A(l)]> =Pl
=1

which concludes the proof. ]

Note that P is the transition matrix of a DropEdge random walk on the augmented
graph (Definition 2.24), and <PL) ~denotes the total probability of transitioning from
node j to node 7 in exactly L stepsl.] As a sanity check, we consider the limit ¢ — 1. In
this case P,PY — Iy which means: 1. (PL> -0 = ‘321@)/8}9

ij

that is the sensitivity of a node’s representation to other nodes’ features vanishes, and 2.

— 0 for ¢ # 7,
1
<PL> ~—1>1/(d; + 1), that is the sensitivity to its own features increases.

Now, let’s consider the general case of ¢ € (0,1). We recall the expressions for the

entries of P (derived in Equation 3.7 and Equation 3.8):

1 — gdmt! 1
>
(1-—q)(dn+1)  dyn+1

. —_ gimt1
Pmn:i(l— L—q ) < !
dpm, (1-q)(dn+1) dpm +1

Pmm =

That is, compared to a NoDrop model, the self-transition probabilities increase while
the probabilities of transitioning out of a state decrease. As a result, the probability
of transitioning from one node to another in exactly L steps may increase or decrease,
depending on the in-degrees of the nodes on the paths connecting them. Without making

assumptions about the topology of the graph, we cannot make statements about the effect
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Figure 3.4: Illustrating the dependence of propagation matrix entries on the topology and
DropEdge probability using a 3-chain graph

DropEdge has on the sensitivity of a node’s representations w.r.t. its own features (as we
did for a 1-layer GCN in Theorem 3.2). For example, consider a 2-layer linear GCN and a
chain graph with 3 nodes, as shown in Figure 3.4a. The diagonal entries of P2 for this graph
are shown in Figure 3.4b. While the entries corresponding to nodes 0 and 2 monotonically
increase, as was expected for a 1-layer GCN, the diagonal entry corresponding to node 1

drops up until g = 0.27, before increasing.

A similar reasoning follows for nodes up to (L — 1) hops away. For nodes L hops away,
however, we can show that DropEdge always decreases the corresponding entry in PL,

reducing the effective reachability of GCNs:

Theorem 3.3. In the case of an L-layer linear GCN with the asymmetric propagation rule
(Equation 3.9), using DropEdge decreases the sensitivity of a node i € V to another node
j € SV (i). Moreover, the sensitivity monotonically decreases as the DropEdge probability

q 18 increased.

Proof. Intuitively, since there is no self-loop on any given L-length path connecting nodes ¢
and j (which are assumed to be L-hops away), the probability of each transition on any path
connecting these nodes is reduced. Therefore, so is the total probability of transitioning

from j to i in exactly L hops. More formally, denote the set of paths connecting them by
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Paths (i, 7) = {(ug, ..., ur) : up = j;ur = 1; (w_1,w) € E,VI € [L]}
The (i, 7)-entry in the propagation matrix is given by
. L .
(PL)Z” _ 3 1P (3.10)
J (uo,...,ur,)EPaths(i,j) =1

Since there is no self-loop on any of these paths,
' L
(#), = X 1I
" =1
= 1
<o HGm)

(ug,..;ur, )EPaths(i,5)

The right hand side of the inequality is the (i, j)-entry in the L' power of the propagation

matrix of a NoDrop model. We conclude the first part of the proof using Lemma 3.3 — the

sensitivity of node ¢ to node j is proportional to (PL> . Next, we recall the geometric
ij

series for any ¢:

1 — d+1
1—|—q+...—i—qd:1—_qq

Each of the terms on the right are increasing in ¢, hence, P, is decreasing in ¢. Using

this result with Equation 3.10, we conclude the second part of the theorem. O]

As discussed earlier, the change in sensitivity between nodes up to L — 1 hops away
depends on the graph topology, and no general statements can be made about it. However,
we can analyze this empirically. We start by sampling 100 molecular graphs from each of
the Proteins and MUTAG datasets. For each graph, we compute its propagation matrix PZ,
with L = 6, bin the node pairs (i,j) by the shortest distance between them, and finally
compute the average of the entries (PL) ~in each of the bins. Finally, we average these
bin-means over the 100 graphs. The resglts are shown in Figure 3.5. We observe that
DropEdge increases the expected sensitivity between nodes close to each other (0-hop and

1-hop neighbors) in the original topology, but reduces it between nodes farther off.
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Figure 3.5: Entries of PY, averaged after binning node-pairs by their shortest distance.

Note that these results correspond to a linear GCN using asymmetric normalization of
the adjacency matrix for aggregating messages (Equation 2.4), i.e. in each message passing
step, only the in-degree of node 7 is used to compute the weight of the message from the
neighboring node j to target node 7. In practice, however, it is more common to use

symmetric normalization (Equation 2.3) instead.
A—DPAD
As in the case of Lemma 3.3, we are looking for

- (e fi)’

L

EM(U,...,M(L) [H A0
=1

While P == Ep [Aij m] does not have a closed form expression, we can approximate
this expectation using Monte-Carlo sampling. We use 10 samples of M to compute an
approximation of P, and plot out the average of its entries, as we did with P in Figure 3.5.
The results are presented in Figure 3.6, which shows that while the sensitivity between
nearby nodes is affected to a lesser extent compared to the results in Figure 3.5, that
between far-off nodes is significantly reduced, same as earlier. This result corroborates
the findings in Figure 3.3, which correspond to a 6-layer non-linear GCN with symmetric

normalization.
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Figure 3.6: Entries of PY, averaged after binning node-pairs by their shortest distance.

3.2.3 L-layer Nonlinear MPNN

While linear networks are useful in simplifying the theoretical analysis, they are often not
practical. In this section, we will extend the inequality bounds from Section 2.4.1 to the

DropEdge setting.

Lemma 2.3 states that for a certain class of (non-linear) MPNNs! — which includes GCNs

— the sensitivity of the model can be bounded as

ozY
an

< (),

1

where ( is independent of the choice of nodes i and j € SU) (i). Taking an expectation

w.r.t. DropEdge on both sides of the inequality, we get

< ¢t (Baonnan [47]) =t ((n[A])7) @

)

oz
an

Envo, v [

1

Theorem 3.3 tells us that (PX )ij decreases monotonically with increasing DropEdge prob-
ability ¢. This implies that, in a non-linear MPNN with A= Aasym, DropEdge lowers the

'While Lemma 2.3 assumes A = A%™_ it does not use that in its proof (see [Top+22, Appendix Al);
the lemma is valid for A = A?Y™ ag well.
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Figure 3.7: Entries of Z?:o Pl, averaged after binning node-pairs by their shortest distance.

sensitivity bound given above. Empirical results in Figure 3.6 support the same conclusion
for A = Asvm,

Similarly, Lemma 2.4 bounds the sensitivity between all node-pairs, and not just those

separated by L-hops:

ozY
(9Xj

ij

L

Hra) veper
1=0

With DropEdge, the bound changes to:

j <t (EM@A..,M@ [i AIDM =G (i (En [AD%

Figure 3.7 shows the plot of the entries of Zz 0P as in the upper bound above with

A= Aasym, against the shortest distance between corresponding nodes. We observe that

oz
an

Envo) . a@ [

the sensitivity between nearby nodes marginally increases, while that between distant nodes

significantly decreases. Similar observations are made with A = Awm,

Finally, Theorem 2.6 considers the case of ReLU-GCNs with A = A®Y™ for message
passing. Moreover, it assumes that each path in the computational graph is active with a
fixed probability. In this case, the sensitivity (in expectation) between any pair of nodes

is given by
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L

H w®

=1

E

oz ]

_ L) (AL
|,

1

Following the steps in Equation 3.11,

({9Z(L)]

E
an

En) . v

[~ (e [8)))

1 i

Here, again, we invoke Theorem 3.3 to conclude that using DropEdge reduces the expected
sensitivity of a node’s representations to the features of nodes L-hops away. Empirical
observations in Figure 3.5 and Figure 3.6 suggest that we should expect an increase in

sensitivity to neighboring nodes, but a decrease in sensitivity to those farther away.

3.2.4 Monte-Carlo DropEdge

In the previous sections, we focused on the expected sensitivity of the stochastic represen-

|

This corresponds to the training-time behavior of DropEdge, wherein model activations

tations:
oz
8Xj

Em

are random. Another way to study DropEdge’s effect is by examining the sensitivity of the

expected representations:

el

1
This approach corresponds to test-time Monte-Carlo averaging over the DropEdge en-
semble (MC-DE), which is better at alleviating over-smoothing as well as at general-
ization |XZL23|. With a linear model, the order of the two operations — expectation

w.r.t. DropEdge and sensitivity computation — was irrelevant:

ozt"
an

ozY
8X]‘

Enm - HEM [Aij} WHI = || Em

1 1
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In general, however, the two quantities can be related using the convexity of norms and

|

Therefore, the discussion in Section 3.2.3 extends to the MC-DE representations as well.

Jensen’s inequality:
ozt"

<E
S Evm Bx;

1

—FE
Haxa M

Although tighter bounds can possibly be derived for this setting, we will leave that for

future works.
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Chapter 4

Experiments

Our theoretical results in Chapter 3 suggest that DropEdge must worsen the performance of
GNNs on tasks relying on the model’s capacity to capture LRIs. In this chapter, we will con-
duct a set of experiments to validate this hypothesis. In Section 4.1, we propose a measure
of the average distance to which signal from a source node is propagated. In a training-free
setting, we show that the propagation distance is negatively correlated with total commute
time in a graph, and using DropEdge reduces it further. In Section 4.2, we reproduce the
SyntheticZINC experiment from |Gio+24|. Furthermore, we show that DropEdge leads to
a performance degradation at all levels of node-mixing. Finally, in Section 4.3, we show
that the performance of GNNs, as the DropEdge probability increases, exhibits starkly con-
trasting trends between citation networks (Cora [McC-+00] and CiteSeer [GBL9§|) and
molecular datasets (Proteins [DDO03] and MUTAG [KMBO5]). Accordingly, we propose a
novel hypothesis on the effect of DropEdge: on short-range tasks, DropEdge improves the
performance of GNNs by reducing their receptive field, thereby increasing model-dataset
alignment. On long-range tasks, on the other hand, it reduces this alignment, negatively

impacting model performance.
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4.1 Signal Propagation

In this section, we construct a synthetic experiment with real-world molecular datasets,
Proteins and MUTAG, to validate the theoretical results characterizing the relationship
between commute times in the graph and the extent of signal propagation in an MPNN. We
closely follow the setup laid out in [Di +23, Appendix F|, with a few changes. Particularly,
for a given graph G (V, £), we start by sampling a source node v € V and setting its features
to a H(®)-dimensional unitary vector (whose entries sum to 1), where H® is the dimension
of the original input features. The features of all other nodes are set to 0y0). We use
L-layer GCNs to compute a measure of signal propagation in the graph, and show that it

negatively correlates with the expected commute time.

4.1.1 Propagation Distance

The measure of signal propagation proposed in [Di 23| was

d=1 =1

A z(Y) de (i, §)

(L) . id A

_ 4.1
20 H(L) Z Z Z('L) H (maxuev dG (u, v)) ( )

The term zgfi) provides a measure of the signal received at node i along dimension d.

The feature values are normalized to offset the possible inflation of the unit mass by the
randomly initialized model, as it is propagated across the graph. These values are used to
weigh the distance dg (7, j) from the source node, which are also normalized so as to reduce
the effect of the graph topology — in the absence of normalization, this measure would be
misleadingly low for graphs with small pairwise distances. Then, for each dimension d €
[H (L)] , the inner summation corresponds to the average distance the signal has propagated
to. Finally, 2<(DL) is computed as the mean of the propagation distances over all dimensions.

We make a few notes about this measure:

e The measure of the signal received at a given node is dependent on the sign of the
feature values. This is an incorrect choice since it implies negative feature values

have lesser information than positive ones.
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e The normalization of the feature matrix is performed over the nodes. We argue that
this loses the disparity in the amount of signal propagated to different nodes. For

Z(L) = alyw and sz) =

example, assume that a GNN outputs the feature vectors z
b1y, with a,b € R and |a| > |b|, for some nodes i,j € V. Normalizing them over

the nodes would reduce them to the same vector, (1 /H (L)) 1,1, failing to account
(L)

for the fact that ZEL) is more signal-rich than z;

e The distances are normalized by the maximum distance from the source node. In
the case of large graphs where max,ey dg (u,v) > L, the signal cannot even reach the
nodes beyond L-hops from the source yet the normalization term takes these nodes
into account. This erroneously biases the propagation distance to be lower for larger

graphs.

To correct these shortcoming, we define our measure of signal propagation through the
L-layer GNN as

N Z(L) .
2w Lyys fo 10 (42)
c} H@L) / Z o~ (L) min (L, maX;ec[nN] dg (j> U)) .

J

Zja

Our proposed measure makes the following changes to the one proposed by [Di +23] (Equa-
tion 4.1):

e We use the absolute values of the features to weigh the shortest distances, instead of
the raw values, since these are more appropriate for measuring the signal contained

in them.

e The normalization of the feature matrix is performed over the nodes, instead of
over the feature dimensions. This would retain the ordering of the nodes along
each dimension, while simultaneously ensuring that the average path lengths are not

artificially inflated by the (random) weights of the network.

e The distances are normalized by the maximum distance from the source that the
signal can reach, so that the propagation distance is not misleadingly low for large

graphs.
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To provide empirical support for our measure, we consider two different sets of graphs
and compute the following quantities: 1. sum of effective resistances between the source
node and all other nodes, 2. total commute time from the source node, 3. the propagation
distance in Equation 4.1, which we call the original measure, and 4. the propagation
distance with our proposed changes, as in Equation 4.2, which we refer to as the proposed
measure. To keep things simple, we initialize the features of the source node to x, =
0.5 x 1, € R?, so that it is a deterministic unitary vector. We use a 2-layer GCN with both
weight matrices equal to identity, W) = W® = I,. Furthermore, we only use graphs
in which the source is at most 2-hops away from all other nodes, so that under-reaching

[Bar-+20] is not an issue.

Graph 1 Graph 2

Effective Resistance = 1.33 Effective Resistance = 2.00
Commute time = 8.00 Commute time = 8.00
Original measure = 1.00 Original measure = 1.00
Proposed measure = 0.67 Proposed measure = 0.60

In the set of graphs above, the gray-colored nodes are the source nodes, with their
features set to x,. Let’s consider graph 1. In the first MPNN layer, a signal is sent from node
0 to node 1 and node 2. In the second MPNN layer, signals from node 0 and node 1 are sent
to node 2, and signals from nodes node 0 and node 2 are sent to node node 1. However, in
graph 2, the second layer does not allow communication of the (non-zero) signal between
node 1 and node 2. As a result, we would expect the propagation distance to be shorter in
the second graph. This expectation is supported by the fact that the total resistance and
total commute time (from the source) are higher in graph 2. While the original measure
is the same in both graphs, our measure captures the effect of the topological changes and

decreases accordingly.
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Graph 2 Graph 3

e{i}e e!Q!e

Effective Resistance = 1.60 Effective Resistance = 1.87 Effective Resistance = 2.67
Commute time = 32.00 Commute time = 29.87 Commute time = 32.00
Original measure = 2.00 Original measure = 2.00 Original measure = 2.00

Proposed measure = 0.80 Proposed measure = 0.78 Proposed measure = 0.74

Figure 4.1: A sequence of 5-node connected graphs.

We will look at another set of graphs obtained by successively removing a pair of edges
from the 5-complete graph (left-most), while ensuring that the source stays connected to
all other nodes. As we saw with the previous set, the original measure cannot discriminate
between these graphs even though the total resistance increases. However, our measure is

able to do so, demonstrating its better discriminative capacity.

Observe that while the total resistance increases over both the edge removal steps, as
expected (Theorem 2.2), the total commute times do not have a similar monotonic rela-
tion. This makes our effort to demonstrate a negative correlation between total commute
time and propagation distance non-trivial, i.e. it is not immediately obvious that the same

observations, as in [Di +23|, will be made.

4.1.2 Effect of DropEdge

Propagation distance describes the average distance a unit mass has travelled from its
starting point; a higher propagation distance suggests that, on average, the unit mass has
journeyed further from the source node. While [Di +23| shows its relation with effective

resistance, we extend the analysis to commute times. Specifically, for a given dataset D,
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Figure 4.2: Propagation distance (our measure, Equation 4.2) versus total commute times
in molecular datasets.

we sample up to 200 graphs!, G' (V' £") € D, and perform 10 runs with each of them. In
each run, a source node, v € V' is sampled at random and its features are set to a random
unitary vector, i.e. ||x,[|, = 1, thus creating a unit mass. We use randomly initialized GCNs
with the depth set at L = 10, which is close to the average diameter of the graphs in the
datasets. The width of all the hidden layers is fixed at H®) = ... = H) = 5 and ReLU
activation is used. The intercept term is removed from all the message-passing layers so
that the node representations in the GCN’s output are non-zero only if they have received
information from the source node. For a DropEdge model, 10 stochastic forward passes are
averaged to compute the feature vectors, Z(“). The propagation distance, %L), is computed
using Equation 4.2, and the total commute time from the source node, defined as the sum
of commute times between the source and all nodes at most L-hops away, is computed

using Theorem 2.3. The propagated distances and total commute times are averaged over

the 10 runs, each with a different source node, to create a datum corresponding to G’

Figure 4.2 shows the plots of propagation distances versus total commute times for a
NoDrop model and a DropEdge model with p = 0.8. The first thing to note is that the
propagation distance is lower in graphs with higher commute times, in agreement with the
results in |[Di +23]. Secondly, employing DropEdge decreases the propagation capacity of
the GCN, thereby providing empirical evidence for our theoretic results in Section 3.1. We
do emphasize that these results are for random networks, and do not account for the effects

of DropEdge on GNN training; we will address this case in Section 4.2.

'MUTAG has only 188 graphs, so we use all of them.
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Figure 4.3: Wilcoxon signed-rank test-statistics between propagation distances (our mea-
sure, Equation 4.2) for DropEdge models with p = 0.0,...,0.9. Green dots indicate signif-
icant results at 95% confidence level.

To provide further evidence for this effect of DropEdge, we perform the pairwise Wilcoxon
signed-rank test between the propagation distances for models using DropEdge probabil-
ities p = 0.0,0.1,...,0.9. We set the alternate hypothesis to be that the first sample is,
element-wise, less than the second sample, i.e. a low test-statistic (more significant) sug-
gests that the 2(@1:) samples from a DropEdge model with p = p; are consistently lower than
the paired ones from a model with p = py. The heat maps of the pairwise test-statistics
are shown in Figure 4.3. Most of the tests with p; > py record significant evidence for re-
jecting the null hypothesis in the favor of the alternate, providing further evidence towards

a higher DropEdge probability reducing the propagation distance in a GCN.

For the sake of completeness, we also add the plots with the original measure of prop-
agation distance (Equation 4.1), reproducing the experiment in [Di +23]. The results are
shown in Figure 4.4. We observe that the trends are completely different from the ones
in Figure 4.2, as well as those reported in [Di 423, Figure 5|. This is because the imple-
mentation of their experiment has a small error? — the feature normalization is performed

. R .. N HI) (L) .
using a raw sum of all the entries in the feature matrix, i.e. > ;" > 7, zg’ d), instead of a

node-wise normalization usin H (L) H
- g ||z )
1

https://github.com/Irnzgiusti/on-|Joversquashing/blob/322fc4c6371a29dc48¢1b54232b914006a1db481/
exp/signal _propagation.py#L67
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Figure 4.4: Propagation distance (original measure, Equation 4.1) versus total resistance
in molecular datasets.

4.2 SyntheticZINC

In Section 4.1, we showed that DropEdge reduces the propagation distance in an MPNN,
which suggests that it has a detrimental effect on MPNNs learning LRIs. However, our
experiment did not account for the effect of DropEdge on model training. Although it
is hard to precisely characterize the effect of DropEdge on the training dynamics of an
MPNN, we can study it by comparing the performance of a regular MPNN against one using
DropEdge, keeping all else equal. In this experiment, we 1. reproduce the results from
[Gio+24], demonstrating that MPNNs perform worse as the minimum distance between
nodes with non-zero mixing in the ground-truth increases, and 2. show that using DropEdge

hurts the performance of an MPNN by reducing the level of mixing it can express.

4.2.1 Experimental Setup

Since it is difficult to determine the level of node-mixing in real-world datasets, follow-
ing [Gio+24, Section 5|, we generate synthetic node-level features and graph-level labels,
controlling the mixing in the ground-truth. Specifically, given a graph G (V, ), we set all
the node features to 0, except for two nodes’, ¢ and j # i, whose features are sampled
as x;,x; € U(0,1). The graph-level target is computed as y = tanh (z; + z;), i.e. the

task requires a non-linear mixing between the features of nodes ¢ and j. These nodes are
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chosen to induce the desired level of underlying mixing — given a € [0, 1], the node-pair
(4,7) is chosen such that C;; is the a-quantile of the distribution of commute times over G.
The graph samples are taken from the ZINC chemical dataset [lrw-12|, with the dataset
size constrained to 12K molecular graphs [Dwi+23|. This way, our dataset is only semi-
synthetic, making the results of this experiment more reliable. We refer to this dataset as
SyntheticZINC.

We analyze the effect of underlying mixing on model performance by varying o between
0 and 1. The MPNN is chosen to be an L-layer GCN with a MAX-pooling readout — this
encourages the model to learn the mixing by passing messages effectively [Gio+24, Theorem
3.2]. The model depth is set at L = maxg [diam (G) /2] = 11 to ensure that the GCN does
not suffer from under-reaching |Bar+20; AY21|. We experiment with a baseline NoDrop
model, and a DropEdge model with P = 0.5. The models are trained using the Adam
optimizer [KB15], with a learning rate of 2 x 1073 and a weight decay of 1 x 107, for
a total of 250 epochs. We perform 10 runs with each configuration to account for the
randomness in training, e.g. in initialization and mini-batch sampling. When reporting
the training metrics, we present the best performance achieved during the 250 epochs of
training. The test metrics are calculated using early stopping, based on the best validation

set metrics.

4.2.2 Results

[Gio+24, Theorem 4.4] suggests that over-squashing in MPNNs depends heavily on the com-
mute time of the underlying mixing, and the results in Section 3.1 suggest that DropEdge
uniformly increases the commute times in the computational graph. Therefore, we expect
to make two observations: 1. the metrics worsen as « is increased from 0 to 1, and 2. the

DropEdge model performs worse than the NoDrop model.

The Mean Absolute Error (MAE) over the training and testing sets are shown in Fig-
ure 4.5. As expected, the performance of the NoDrop model worsens as « increases, i.e. as
the underlying function entails mixing between farther off nodes. By fixing the GNN archi-
tecture, we controlled for the effects of vanishing gradients and over-smoothing, so that

the cause of declining performance can be fully attributed to over-squashing.
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Figure 4.5: Train and Test MAE of GCN on the SyntheticZINC dataset, with varying levels
of the underlying mixing

The performance of the DropEdge model is much worse than the NoDrop baseline,
implying that DropEdge significantly reduces the mixing between nodes. Finally, note that
the NoDrop model has a near-zero generalization gap (difference between the training and
testing MAE), while it is much higher for the DropEdge model. This is an unintuitive
result since DropEdge famously reduces over-fitting on short-range tasks [Ron+20]. While
the reason for this observation is unclear, [AY21] hypothesizes that this is because the
model overfits to short-range artifacts in the training data, leading to poor generalization.
This observation suggests a need for a re-evaluation of the suitability of DropEdge (and

other similar methods designed to train deep GNNs) at learning long-range tasks.

4.3 Real-World Datasets

In Section 3.2, we concluded that DropEdge increases sensitivity to nearby nodes, while
reducing it between nodes far from each other. This would imply that GNNs trained on
homophilic datasets — e.g. citation networks like Cora and CiteSeer — would benefit from
DropEdge, especially if these GNNs are deep. On the other hand, DropEdge could be ex-
pected to worsen GNNs on long-range tasks — e.g. molecular datasets like Proteins and
MUTAG. To validate these hypotheses, we study the effect of DropEdge probability on train-
ing accuracy of the GCN and GAT models.
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Name | #graphs | #nodes | #edges | #features | #classes
Cora 1 2,708 10,556 1,433 7
CiteSeer 1 3,327 9,104 3,703 6
Proteins 1,113 ~39.1 ~145.6 3 2
MUTAG 188 ~17.9 ~39.6 7 2

Table 4.1: Dataset Statistics. Note that the number of edges is counts each direction of an
undirected edge twice (for fair comparison between directed and undirected graphs).

Description of the Datasets: Cora and CiteSeer are citation networks — their nodes
represent scientific publications and an edge between two nodes indicates that one of them
has cited the other. The features of each publication is represented by a binary vector,
where each index indicates whether a specific word from a dictionary is present or absent.
The Proteins dataset is a molecular property prediction dataset where the task entails
classifying protein molecules as enzymes or not. Similarly, the MUTAG dataset consists of
nitroaromatic compounds, and the task is to predict their mutagenic effects on Salmonella

typhimurium. The statistics of these four datasets are presented in Table 4.1.

4.3.1 Experimental Setup

We train randomly initialized L-layer GCNs and GATs with K = 2 attention heads, on
Cora, CiteSeer, Proteins and MUTAG datasets. The number of message passing steps is
varied from L = 2 to L = 7 for Cora and CiteSeer, but only till L = 6 for Proteins
and MUTAG since deeper GNNs struggled to learn on these datasets. The size of the hidden
representations is set at 64 for the citation networks and 32 for the molecular datasets. A
linear readout layer is used to compute the node-level logits for citation networks, whereas
for the molecular datasets, the readout layer is a composition of the AVG-pooling layer and
a linear output layer. The DropEdge probability is varied from ¢ = 0.1 to ¢ = 0.9, in
increments of 0.1. The models are trained using the Adam optimizer, with a learning rate
of 5 x 1072 and a weight decay of 5 x 1074, for a total of 300 epochs. We conduct 5 runs

with each hyperparameter setting and then average the metrics.
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4.3.2 Citation Networks
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Figure 4.6: Training accuracy versus the DropEdge probability for the citation networks.

The training accuracy versus DropEdge probability plots for Cora and CiteSeer datasets
are shown in Figure 4.6. The trends in both the plots convey an interesting story. While
we expected the models to benefit from increasing DropEdge probability ¢, in fact, the
training accuracy falls up to a point, before increasing. This can be explained as follows —
as the DropEdge probability is increased from ¢ = 0, although the model gets aligned with
the short-range tasks by reducing the effective receptive field of the MPNNs, the underlying
tasks also become harder as the entropy of the input distribution increases. That is, there
is an interplay of two opposing effects — on one hand, the increased alignment should im-
prove model performance, but on the other, the increased difficulty of the learning task
should worsen it. Once ¢ becomes large enough, the entropy of the input distribution starts

reducing again and the complexity of the training task starts reducing. Accordingly, the

70



Cora

GCN GAT
0.85 1

0.855 1
z 2 0.84 1
£ 0.850 1 g <
[+ Y o83
< <
2 0.845 o>
= =
£ = 0.82
] 3
= =

0.840 1 0.81 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DropEdge Probability DropEdge Probability
— L=2 L=3 — L=4 —L=5 —L=6 — L=7
CiteSeer
GCN GAT

0.75 N 0.74 -
> 074 > 073
o C o7z
3 073 N
o o
3 gon
= 072 2 070
b ki
2 071 & 069

0.70 0.68

0.67
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DropEdge Probability DropEdge Probability
—L=2 L=3 — L=4 —L=5 —L=6 —L=7

Figure 4.7: Testing accuracy versus the DropEdge probability for the citation networks.

two effects start complementing each other and the performance improves. Another obser-
vation we make is that the minima of training accuracy is achieved at a lower DropEdge
probability for deeper networks, than for shallower ones. This implies that the benefits
from model alignment start to dominate sooner for deeper models, and sometimes their
performance improves even before the entropy of the data starts decreasing. This supports
our hypothesis that the benefits of DropEdge are more significant when it comes to aligning

deep MPNNs for short-range tasks, but less so at aligning shallow MPNNs.

As for the test accuracy (shown in Figure 4.7), we note that it increases as the DropEdge
probability is increased. This can, again, be explained as two complementary effects.
Firstly, the reduced receptive field during training time biases the convergence towards

locally consistent models, thereby aligning the learnt model with the ground-truth and
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reducing the approximation error. Second is the reduction in over-fitting thanks to a
stochastically augmented dataset, similar to how random image augmentation techniques,

like rotation, cropping and/or flipping, improve generalization in CNNs [SK19].

A final observation we make is on the effect of model depth. Clearly, both training and
testing metrics decrease as the model depth is increased. This can be explained by several

complementary factors:

e Training is more unstable for deeper MPNNs, with vanishing gradients and over-
smoothing posing a major constraint towards training deeper models. While DropEdge

reduces the extent of over-smoothing, it still does not alleviate it.

e Moreover, we hypothesize that the higher receptive field of deep MPNNs decreases their

alignment with the citation networks, thereby negatively affecting performance.

Though our novel hypothesis (in the last point) cannot be clearly validated in the
presence of the other confounding effects, we’ll make a reliable conclusion using these

results in combination with the ones for long-range molecular datasets.

4.3.3 Molecular Datasets

The training accuracies with the molecular datasets, Proteins and MUTAG, are shown in
Figure 4.8. The trends here are a lot different from those observed for citation networks.
Specifically, the training accuracy has a decreasing trend against the DropEdge probability.
We explain this by adapting the hypothesis we laid out for the citation networks: for
long-range tasks, DropEdge contributes in two detrimental ways — one is by reducing the
effective receptive field of the MPNN, thereby reducing the model alignment, and the other
is by making the learning task harder.

Similarly, the test accuracy, as shown in Figure 4.9, exhibits a decreasing trend, which
contrasts sharply with the behavior observed for citation networks in Figure 4.7. Further-
more, the impact of increasing model depth on molecular datasets appears ambiguous,

despite the well-known issues of vanishing gradients and over-smoothing. This ambiguity
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Figure 4.8: Training accuracy versus the DropEdge probability for the molecular datasets.

arises because, for molecular datasets, deeper models better align with the task, partially
mitigating these detrimental effects and enabling deeper MPNNs to remain competitive with
shallower ones. These trends do not align with the existing explanations of DropEdge’s
effects on over-smoothing and over-fitting; however, our hypothesis offers a more fitting

explanation.
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Chapter 5

Conclusion

The objective of our work was to explore the impact of DropEdge on over-squashing in
MPNNs. Specifically, we aimed to determine how DropEdge influences model performance
on tasks that entail long-range information propagation. To achieve this, we approached
the problem from two complementary perspectives: 1. we studied the effects of DropEdge
on the expected commute time, which is indicative of the mixing capacity of an MPNN,
and 2. we conducted an analysis of the effect of DropEdge on the sensitivity of node
representations and evaluated its impact on performance metrics on both synthetic and
real-world datasets. Through these investigations, we aimed to better understand how
DropEdge might effect the over-squashing levels, as well as influence the performance of

GNNs on long-range learning tasks.

5.1 Key Findings

In this work, we studied the effect of DropEdge on over-squashing in GNNs, and investigated
its applicability at modelling LRIs. In Section 3.1, we showed that DropEdge increases the
expected commute time between all node-pairs, suggesting that it reduces the mixing of
information between distant nodes. In Section 3.2, we studied the sensitivity of node

representations in an L-layer GCN, showing that it is reduced between nodes L-hops away.
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This implies that DropEdge reduces the model’s effective receptive field. Furthermore, we
extended the previously established sensitivity bounds for nonlinear MPNNs to the DropEdge
setting, making similar conclusions as in the case of linear models. In Section 4.1, we
presented empirical support for our theoretical findings by showing that DropEdge reduces
the signal propagated by a GCN. Towards a more performance-based evaluation of DropEdge,
in Section 4.2, we showed that it significantly increases the MAE on the training set, as well
as that on the test set, in a (semi-synthetic) long-range task. Moreover, the generalization
gap of the DropEdge model was observed to be significantly larger, which is in stark contrast
to its reported effect on short-range tasks [Ron+20]. Finally, in Section 4.3.2, we evaluated
the effect of DropEdge on real-world (short-range) citation networks [GBLI8; McC+00],
and in Section 4.3.3, on (long-range) molecular datasets [DD03; KMBO05]. We proposed a
novel hypothesis justifying the noticeably different trends in the two cases — while DropEdge
improves the test metrics on short-range tasks by reducing the GNN’s receptive field, thereby
increasing model-dataset alignment, it degrades the generalizability of the models on long-

range tasks by forcing them to overfit to short-range artifacts from the training set.

Our analysis points out a key assumption in algorithms designed for training deep GNNs:
the idea that if a deep GNN is trainable, it must also have the ability to model LRIs. In
other words, that alleviating the problems of vanishing gradients and over-smoothing is
sufficient to ensure that deep GNNs can be effective at long-range tasks. Our results suggest
that this, in fact, need not be true — we theoretically and empirically show that DropEdge
exacerbates the over-squashing problem in deep GNNs, and degrades their performance on
long-range tasks. Our results highlight a need for a thorough evaluation of DropEdge,
and other methods employed when training deep GNNs, with regards to their capacity to
capture LRIs.

5.2 Limitations

Despite the contributions of this work, there are several limitations to consider.

Theoretical Analysis and Learning Trajectory: As aregularization technique, DropEdge

has a significant effect on model convergence (Section 2.3). However, our theoretical anal-
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ysis does not account for its impact on learning. Understanding how DropEdge influences

the intermediate stages of learning would provide a more comprehensive view of its effects.

Scope of Theoretical Analysis: Our exact theoretical investigation is limited to linear
GCNs (Section 3.2.2). Although we extended the existing sensitivity bounds for nonlinear
MPNNs to the DropEdge setting (Section 3.2.3), the use of inequality bounds introduces chal-
lenges in drawing reliable and generalizable conclusions. Further theoretical exploration

across various nonlinear models could yield more robust insights.

Experimental Models: Our experiments with real-world datasets focused on GCN and
GAT models. While these are representative of commonly used architectures, the results
may not be fully applicable to other GNNs. Exploring a broader range of models could

provide a more comprehensive understanding of DropEdge’s effects.

Dataset Scale: Our empirical analysis in Chapter 4 relies on small-scale (note, not small-
range) datasets. The conclusions drawn from these limited datasets may not fully represent
the complexities in more extensive real-world scenarios. Larger and more diverse datasets

(Section 2.5.4) would have enhanced the reliability and generalizability of our findings.

5.3 Future Directions and Final Remarks

This thesis provides a foundation for understanding the effects of DropEdge on GNNs, but

several promising avenues for future research remain.

Analysis of Other Algorithms for Training Deep GNNs: While this work focuses on
DropEdge, there is a need for a broader investigation into other methods designed to train
deeper GNNs (Section 2.5.1). Analyzing various strategies designed for mitigating over-
smoothing, particularly in the context of over-squashing, could be invaluable for designing

deep GNNs for long-range tasks.

Investigation of DropEdge-like Methods: Future research could also consider other

DropEdge-like techniques that operate on the adjacency matrix. These include DropNode
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[Fen+20], DropGNN [Pap-+21], and DropAGG [Jia+23]. A thorough examination of these
techniques, including their impact on model training and performance, would contribute

to a comprehensive understanding of the effect of random edge-dropping on learning LRIs.

Evaluation with Long-Range Datasets: Our study used small-scale datasets, which
may limit the generalizability of the findings. Future work should involve a comprehensive
evaluation using long-range graph datasets (Section 2.5.4) to better assess how methods like
DropEdge perform in more complex scenarios. This would provide a deeper understanding
of how different techniques handle long-range dependencies and their practical implications

for real-world applications.

We hope our work highlights the gap in our understanding of LRI-modelling and encourages
the research community to explore the suitability of deep GNNs for long-range tasks.
We re-iterate: the ability of some algorithms to improve the trainability of deep GNNs by
mitigating issues like vanishing gradients and over-smoothing does not necessarily imply
that these models can effectively capture LRIs. To conclude that, we need better theoretical
understanding of these algorithms, as well as extensive evaluation on long-range graph

benchmarks.

78



Bibliography

[DS84]

[Cha+89]

[LeC+89]

[Lov93]

[Tau95|

[GBL9S|

[McC+00]

[DD03|

Peter G. Doyle and J. Laurie Snell. Random Walks and Electric Networks.

Carus Mathematical Monographs. Mathematical Association of America, 1984.

Ashok K. Chandra et al. “The electrical resistance of a graph captures its
commute and cover times”. In: computational complexity 6 (1989), pp. 312—
340.

Yann LeCun et al. “Handwritten Digit Recognition with a Back-Propagation
Network”. In: Advances in Neural Information Processing Systems. Ed. by D.
Touretzky. Vol. 2. Morgan-Kaufmann, 1989.

L. Lovéasz. “Random walks on graphs: A survey”. In: Combinatorics, Paul
FErdos is Eighty 2.1 (1993), pp. 1-46.

Gabriel Taubin. “A signal processing approach to fair surface design”. In:
Proceedings of the 22nd Annual Conference on Computer Graphics and In-
teractive Techniques. SIGGRAPH ’95. New York, NY, USA: Association for
Computing Machinery, 1995, pp. 351-358.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. “CiteSeer: an auto-
matic citation indexing system”. In: Proceedings of the Third ACM Conference
on Digital Libraries. DL ’98. Pittsburgh, Pennsylvania, USA: Association for
Computing Machinery, 1998, pp. 89-98.

Andrew Kachites McCallum et al. “Automating the Construction of Internet
Portals with Machine Learning”. In: Information Retrieval 3.2 (July 2000),
pp- 127-163.

Paul D. Dobson and Andrew J. Doig. “Distinguishing Enzyme Structures from
Non-enzymes Without Alignments”. In: Journal of Molecular Biology 330.4
(2003), pp. 771-783.

79



[YFWO03]

[KMBO5]|

[MS05]

[Fed+06]

[WKO6]

[Sen+08]

[01109]

[Sca+09]

[Eve+10]

[Irw+12]

[LM12]

J.S. Yedidia, W.T. Freeman, and Y. Weiss. “Understanding Belief Propagation
and Its Generalizations”. In: Ezploring Artificial Intelligence in the New Mil-

lennium. Ed. by G. Lakemeyer and B. Nebel. Morgan Kaufmann Publishers,
Jan. 2003. Chap. 8, pp. 239-236.

Jeroen Kazius, Ross McGuire, and Roberta Bursi. “Derivation and Valida-
tion of Toxicophores for Mutagenicity Prediction”. In: Journal of Medicinal
Chemistry 48.1 (Jan. 2005), pp. 312-320.

Peter Mahlmann and Christian Schindelhauer. “Peer-to-peer networks based
on random transformations of connected regular undirected graphs”. In: Pro-
ceedings of the Seventeenth Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures. SPAA ’05. Las Vegas, Nevada, USA: Association
for Computing Machinery, 2005, pp. 155-164.

Tomas Feder et al. “A Local Switch Markov Chain on Given Degree Graphs
with Application in Connectivity of Peer-to-Peer Networks”. In: 2006 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’06).
2006, pp. 69-76.

Nikil Wale and George Karypis. “Comparison of Descriptor Spaces for Chem-
ical Compound Retrieval and Classification”. In: Sixth International Confer-
ence on Data Mining (ICDM’06). 2006, pp. 678—-689.

Prithviraj Sen et al. “Collective Classification in Network Data”. In: Al Mag-
azine 29.3 (Sept. 2008), p. 93.

Yann Ollivier. “Ricci curvature of Markov chains on metric spaces”. In: Journal
of Functional Analysis 256.3 (2009), pp. 810-864.

Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Trans-
actions on Neural Networks 20.1 (2009), pp. 61-80.

Mark Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”.
In: International Journal of Computer Vision 88.2 (June 2010), pp. 303-338.

John J Irwin et al. “ZINC: a free tool to discover chemistry for biology”. en.
In: J Chem Inf Model 52.7 (June 2012), pp. 1757-1768.

Jure Leskovec and Julian Mcauley. “Learning to Discover Social Circles in Ego
Networks”. In: Advances in Neural Information Processing Systems. Ed. by F.

Pereira et al. Vol. 25. Curran Associates, Inc., 2012.

80



[Nam+12] Galileo Mark Namata et al. “Query-Driven Active Surveying for Collective
Classification”. In: International Workshop on Mining and Learning with Graphs.

Edinburgh, Scotland: MLG, 2012.

[TMP12]  Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. “Social structure of
Facebook networks”. In: Physica A: Statistical Mechanics and its Applications
391.16 (2012), pp. 4165-4180.

[MHN13]  A.L.Maas, A.Y. Hannun, and A.Y. Ng. “Rectifier Nonlinearities Improve Neu-
ral Network Acoustic Models”. In: Proceedings of the International Conference

on Machine Learning. Atlanta, Georgia, 2013.

[LK14| Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. June 2014.

[Lin+14] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In:
Computer Vision — ECCV 2014. Ed. by David Fleet et al. Cham: Springer
International Publishing, 2014, pp. 740-755.

[Ram-+14] Raghunathan Ramakrishnan et al. “Quantum chemistry structures and prop-
erties of 134 kilo molecules”. In: Scientific Data 1 (2014).

[Sri+14] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15.56 (2014),
pp- 1929-1958.

[KB15] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: International Conference on Learning Representations (ICLR). San
Diega, CA, USA, 2015.

[McA+15] Julian McAuley et al. “Image-Based Recommendations on Styles and Sub-
stitutes”. In: Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR '15. Santiago,

Chile: Association for Computing Machinery, 2015, pp. 43-52.

[Sin+15] Sandeep Singh et al. “SATPdb: a database of structurally annotated thera-
peutic peptides”. en. In: Nucleic Acids Res 44.D1 (Nov. 2015), pp. D1119-
26.

[Sze+15] Christian Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1-
9.

81


http://snap.stanford.edu/data

[All+16]

[GG16]

[He+16]

[Kaw16]

[Li+16|

[YCS16|

[Gil+17]

[HYL17]

Zeyuan Allen-Zhu et al. “Expanders via local edge flips”. In: Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms.
SODA ’16. Arlington, Virginia: Society for Industrial and Applied Mathemat-
ics, 2016, pp. 259-269.

Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning”. In: Proceedings of The
33rd International Conference on Machine Learning. Ed. by Maria Florina
Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning
Research. New York, New York, USA: PMLR, June 2016, pp. 1050-1059.

Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 770-778.

Kenji Kawaguchi. “Deep Learning without Poor Local Minima”. In: Advances
in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran
Associates, Inc., 2016.

Yujia Li et al. “Gated Graph Sequence Neural Networks”. In: 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and
Yann LeCun. 2016.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. “Revisiting Semi-
Supervised Learning with Graph Embeddings”. In: Proceedings of The 33rd
International Conference on Machine Learning. Ed. by Maria Florina Balcan
and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research.
New York, New York, USA: PMLR, June 2016, pp. 40-48.

Justin Gilmer et al. “Neural Message Passing for Quantum Chemistry”. In:
Proceedings of the 34th International Conference on Machine Learning. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning
Research. PMLR, Aug. 2017, pp. 1263-1272.

Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representation
Learning on Large Graphs”. In: Advances in Neural Information Processing
Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.

82



[KW17]

[MBB17]

[Sch+17]

[Vas+17]

|ZL17]

[CZS18]

[GWI18]

[LHW18)]

[MDS18]

[She+18]

[Vel + 18]

Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph
Convolutional Networks”. In: International Conference on Learning Represen-

tations (ICLR). 2017.

Federico Monti, Michael Bronstein, and Xavier Bresson. “Geometric Matrix
Completion with Recurrent Multi-Graph Neural Networks”. In: Advances in
Neural Information Processing Systems. Ed. by 1. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017.

Michael Schlichtkrull et al. Modeling Relational Data with Graph Convolu-
tional Networks. 2017.

Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by 1. Guyon et al. Vol. 30. Curran As-

sociates, Inc., 2017.

Marinka Zitnik and Jure Leskovec. “Predicting multicellular function through
multi-layer tissue networks”. In: Bioinformatics 33.14 (July 2017), pp. i190-
i198.

Jianfei Chen, Jun Zhu, and Le Song. “Stochastic Training of Graph Convo-
lutional Networks with Variance Reduction”. In: International Conference on
Machine Learning. 2018, pp. 941-949.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. “Large-Scale Learnable
Graph Convolutional Networks”. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery € Data Mining. ACM.
2018, pp. 1416-1424.

Qimai Li, Zhichao Han, and Xiao-ming Wu. “Deeper Insights Into Graph
Convolutional Networks for Semi-Supervised Learning”. In: Proceedings of the
AAAI Conference on Artificial Intelligence 32.1 (Apr. 2018).

Matthew K Matlock, Na Le Dang, and S Joshua Swamidass. “Learning a
Local-Variable Model of Aromatic and Conjugated Systems”. en. In: ACS
Cent Sci 4.1 (Jan. 2018), pp. 52-62.

Oleksandr Shchur et al. “Pitfalls of Graph Neural Network Evaluation”. In:
Relational Representation Learning Workshop, NeurIPS 2018 (2018).

Petar Velickovi¢ et al. “Graph Attention Networks”. In: International Confer-

ence on Learning Representations. 2018.

83



[Xu+18| Keyulu Xu et al. “Representation Learning on Graphs with Jumping Knowl-
edge Networks”. In: Proceedings of the 35th International Conference on Ma-
chine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. PMLR, July 2018, pp. 5453-5462.

[Yin+18]  Rex Ying et al. “Graph Convolutional Neural Networks for Web-Scale Rec-
ommender Systems”. In: Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery € Data Mining. KDD ’18. London,
United Kingdom: Association for Computing Machinery, 2018, pp. 974-983.

[Coo+19]  Colin Cooper et al. “The flip Markov chain for connected regular graphs”. In:
Discrete Applied Mathematics 254 (2019), pp. 56-79.

[FL19] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning
with PyTorch Geometric”. In: ICLR Workshop on Representation Learning
on Graphs and Manifolds. 2019.

[Li+19] Guohao Li et al. “DeepGCNs: Can GCNs Go As Deep As CNNs?” In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV). 2019, pp. 9266—
9275.

[Mat+19]  Matthew K. Matlock et al. “Deep learning long-range information in undi-
rected graphs with wave networks”. In: 2019 International Joint Conference
on Neural Networks (IJCNN). 2019, pp. 1-8.

[SK19] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data Aug-
mentation for Deep Learning”. In: Journal of Big Data 6.1 (July 2019), p. 60.

[Wan+19]  Minjie Wang et al. “Deep Graph Library: A Graph-Centric, Highly-Performant
Package for Graph Neural Networks”. In: arXiv preprint arXiv:1909.01315
(2019).

[Bar+20]  Pablo Barcel6 et al. “The Logical Expressiveness of Graph Neural Networks”.

In: International Conference on Learning Representations. 2020.

[CW20a) Chen Cai and Yusu Wang. A Note on Over-Smoothing for Graph Neural Net-
works. 2020.

[CW20D)| Chen Cai and Yusu Wang. A Note on Over-Smoothing for Graph Neural Net-
works. 2020.

84



[Che+20al

[Che+20b]

[Fen+20]

|GK20]

[Gon+20]

[Has—+20]

[Hu+-20]

[Hua-+20]

[LGJ20]

[Mor+-20]

[0S20]

Deli Chen et al. “Measuring and Relieving the Over-Smoothing Problem for
Graph Neural Networks from the Topological View”. In: Proceedings of the
AAAI Conference on Artificial Intelligence 34.04 (Apr. 2020), pp. 3438-3445.

Ming Chen et al. “Simple and Deep Graph Convolutional Networks”. In: Pro-
ceedings of the 37th International Conference on Machine Learning. Ed. by
Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning
Research. PMLR, July 2020, pp. 1725-1735.

Wenzheng Feng et al. “Graph Random Neural Networks for Semi-Supervised
Learning on Graphs”. In: Advances in Neural Information Processing Systems.
Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 22092
22103.

Hossein Gholamalinezhad and Hossein Khosravi. Pooling Methods in Deep
Neural Networks, a Review. 2020.

Shunwang Gong et al. “Geometrically Principled Connections in Graph Neural
Networks”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2020, pp. 11412-11421.

Arman Hasanzadeh et al. Bayesian Graph Neural Networks with Adaptive
Connection Sampling. 2020.

Weihua Hu et al. “Open Graph Benchmark: Datasets for Machine Learning
on Graphs”. In: arXiv preprint arXiv:2005.00687 (2020).

Lei Huang et al. Normalization Techniques in Training DNNs: Methodology,
Analysis and Application. 2020.

Meng Liu, Hongyang Gao, and Shuiwang Ji. “Towards Deeper Graph Neural
Networks”. In: Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. ACM. 2020.

Christopher Morris et al. “TUDataset: A collection of benchmark datasets
for learning with graphs”. In: ICML 2020 Workshop on Graph Representation
Learning and Beyond (GRL+ 2020). 2020.

Kenta Oono and Taiji Suzuki. “Graph Neural Networks Exponentially Lose
Expressive Power for Node Classification”. In: International Conference on

Learning Representations. 2020.

85



[Ron+20]

[RS20]

ISGB20]

[You+20al

[You-+20b]

[You+20c]

[ZA20]

[Zho+20]

|Zhu+20]

IAY21]

Yu Rong et al. “DropEdge: Towards Deep Graph Convolutional Networks on
Node Classification”. In: International Conference on Learning Representa-
tions. 2020.

Benedek Rozemberczki and Rik Sarkar. “Characteristic Functions on Graphs:
Birds of a Feather, from Statistical Descriptors to Parametric Models”. In:
Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. CIKM ’20. Virtual Event, Ireland: Association for
Computing Machinery, 2020, pp. 1325-1334.

Kimberly Stachenfeld, Jonathan Godwin, and Peter Battaglia. Graph Net-
works with Spectral Message Passing. 2020.

Yuning You et al. “Graph Contrastive Learning with Augmentations”. In:
Advances in Neural Information Processing Systems. Ed. by H. Larochelle et
al. Vol. 33. Curran Associates, Inc., 2020, pp. 5812-5823.

Yuning You et al. “LL2-GCN: Layer-Wise and Learned Efficient Training of
Graph Convolutional Networks”. In: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2020, pp. 2124-2132.

Yuning You et al. “When Does Self-Supervision Help Graph Convolutional
Networks?” In: Proceedings of the 37th International Conference on Machine
Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of
Machine Learning Research. PMLR, July 2020, pp. 10871-10880.

Lingxiao Zhao and Leman Akoglu. “PairNorm: Tackling Oversmoothing in

GNNs”. In: International Conference on Learning Representations. 2020.

Kaixiong Zhou et al. “Towards Deeper Graph Neural Networks with Differen-
tiable Group Normalization”. In: Advances in neural information processing

systems. 2020.

Jiong Zhu et al. “Beyond Homophily in Graph Neural Networks: Current Lim-
itations and Effective Designs”. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020,
pp. 7793-7804.

Uri Alon and Eran Yahav. “On the Bottleneck of Graph Neural Networks and
its Practical Implications”. In: International Conference on Learning Repre-
sentations. 2021.

86



[Bod+21|

[Hu+21]

[Lim-+21|

[Muk-+21]

[Pap+21]

[RW21]

[RAS21]

|Zho 1 21a

|Zho+21D)

[Arn+22]

Cristian Bodnar et al. “Weisfeiler and Lehman Go Cellular: CW Networks”.
In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato
et al. Vol. 34. Curran Associates, Inc., 2021, pp. 2625-2640.

Weihua Hu et al. “OGB-LSC: A Large-Scale Challenge for Machine Learning
on Graphs”. In: Proceedings of the Neural Information Processing Systems

Track on Datasets and Benchmarks. Ed. by J. Vanschoren and S. Yeung.
Vol. 1. 2021.

Derek Lim et al. “New Benchmarks for Learning on Non-Homophilous Graphs”.
In: arXiv preprint arXiw:2104.01404 (2021).

Arjun Mukherjee et al. “What Yelp Fake Review Filter Might Be Doing?” In:
Proceedings of the International AAAI Conference on Web and Social Media
7.1 (Aug. 2021), pp. 409-418.

Pal Andras Papp et al. “DropGNN: Random Dropouts Increase the Expres-
siveness of Graph Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc.,
2021, pp. 21997-220009.

Ladislav Rampasek and Guy Wolf. “Hierarchical Graph Neural Nets can Cap-
ture Long-Range Interactions”. In: 2021 IEEFE 31st International Workshop on
Machine Learning for Signal Processing (MLSP). 2021, pp. 1-6.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. “Multi-Scale Attributed
Node Embedding”. In: Journal of Complex Networks 9.2 (2021).

Kaixiong Zhou et al. “Dirichlet energy constrained learning for deep graph

neural networks”. In: Advances in neural information processing systems (2021).

Kuangqi Zhou et al. “Understanding and Resolving Performance Degradation
in Deep Graph Convolutional Networks”. In: Proceedings of the 30th ACM
International Conference on Information € Knowledge Management. 2021,
pp. 2728-2737.

Adrian Arnaiz-Rodriguez et al. “DiffWire: Inductive Graph Rewiring via the
Lovasz Bound”. In: Proceedings of the First Learning on Graphs Conference.
Ed. by Bastian Rieck and Razvan Pascanu. Vol. 198. Proceedings of Machine
Learning Research. PMLR, Dec. 2022, 15:1-15:27.

87



[Ban+22]

[DLV22]

[Gia22)]

[Top-+22]

[You+22]

[Zhe+22]

[Bla+23]

[Di +23]

[Dwi+23|

[Fan-+23|

Pradeep Kr. Banerjee et al. “Oversquashing in GNNs through the lens of in-
formation contraction and graph expansion”. In: 2022 58th Annual Allerton

Conference on Communication, Control, and Computing (Allerton). Monti-
cello, IL, USA: IEEE Press, 2022, pp. 1-8.

Andreea Deac, Marc Lackenby, and Petar Velickovi¢. “Expander Graph Propa-
gation”. In: NeurIPS 2022 Workshop: New Frontiers in Graph Learning. 2022.

George Giakkoupis. “Expanders via local edge flips in quasilinear time”. In:
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Com-
puting. STOC 2022. Rome, Italy: Association for Computing Machinery, 2022,
pp. 64-76.

Jake Topping et al. “Understanding over-squashing and bottlenecks on graphs
via curvature”. In: International Conference on Learning Representations.
2022.

Yuning You et al. “Bringing Your Own View: Graph Contrastive Learning
without Prefabricated Data Augmentations”. In: Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining. WSDM
'22. Virtual Event, AZ, USA: Association for Computing Machinery, 2022,
pp. 1300-1309.

Wenqging Zheng et al. “Cold Brew: Distilling Graph Node Representations
with Incomplete or Missing Neighborhoods”. In: International Conference on

Learning Representations. 2022.

Mitchell Black et al. “Understanding Oversquashing in GNNs through the
Lens of Effective Resistance”. In: Proceedings of the 40th International Confer-

ence on Machine Learning. Ed. by Andreas Krause et al. Vol. 202. Proceedings
of Machine Learning Research. PMLR, July 2023, pp. 2528-2547.

Francesco Di Giovanni et al. “On over-squashing in message passing neural
networks: The impact of width, depth, and topology”. In: International Con-
ference on Machine Learning. PMLR. 2023, pp. 7865-7885.

Vijay Prakash Dwivedi et al. “Benchmarking Graph Neural Networks”. In:
Journal of Machine Learning Research 24.43 (2023), pp. 1-48.

Taoran Fang et al. “DropMessage: Unifying Random Dropping for Graph Neu-
ral Networks”. In: (2023).

88



[Fer+23]

[GYS23]

[Gir+23|

[Gut+23]

[Han+-23]

[Jia+23]

[KBM23|

|Liut 23]

[Ngu+-23]

[RBM23]

Oleksandr Ferludin et al. “TF-GNN: Graph Neural Networks in TensorFlow”.
In: CoRR abs/2207.03522 (2023).

Rickard Briiel Gabrielsson, Mikhail Yurochkin, and Justin Solomon. “Rewiring
with Positional Encodings for Graph Neural Networks”. In: Transactions on
Machine Learning Research (2023).

Jhony H. Giraldo et al. “On the Trade-off between Over-smoothing and Over-
squashing in Deep Graph Neural Networks”. In: Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management. CIKM
’23. Birmingham, United Kingdom: Association for Computing Machinery,
2023, pp. 566-576.

Benjamin Gutteridge et al. “DRew: Dynamically Rewired Message Passing
with Delay”. In: International Conference on Machine Learning. PMLR. 2023,
pp. 12252-12267.

Jiaqi Han et al. “Structure-Aware DropEdge Toward Deep Graph Convolu-
tional Networks”. In: IEFE Transactions on Neural Networks and Learning
Systems (2023), pp. 1-13.

Bo Jiang et al. “DropAGG: Robust Graph Neural Networks via Drop Aggre-
gation”. In: Neural Networks 163 (2023), pp. 65-74.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. “FoSR: First-
order spectral rewiring for addressing oversquashing in GNNs”. In: The Eleventh

International Conference on Learning Representations. 2023.

Yang Liu et al. “CurvDrop: A Ricci Curvature Based Approach to Prevent
Graph Neural Networks from Over-Smoothing and Over-Squashing”. In: Pro-

ceedings of the ACM Web Conference 2023. WWW ’23. Austin, TX, USA:
Association for Computing Machinery, 2023, pp. 221-230.

Khang Nguyen et al. “Revisiting over-smoothing and over-squashing using
ollivier-ricci curvature”. In: Proceedings of the 40th International Conference
on Machine Learning. ICML’23. Honolulu, Hawaii, USA: JMLR.org, 2023.

T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey
on Oversmoothing in Graph Neural Networks. 2023.

89



[XZL23]

[Gio+24]

[Qia+24]

Han Xuanyuan, Tianxiang Zhao, and Dongsheng Luo. “Shedding Light on
Random Dropping and Oversmoothing”. In: NeurlPS 2023 Workshop: New
Frontiers in Graph Learning. 2023.

Francesco Di Giovanni et al. “How does over-squashing affect the power of
GNNs?” In: Transactions on Machine Learning Research (2024).

Chendi Qian et al. “Probabilistically Rewired Message-Passing Neural Net-
works”. In: The Twelfth International Conference on Learning Representa-
tions. 2024.

90



	Acknowledgement
	Abstract
	Introduction
	Overview
	Research Objectives
	Contributions
	Outline
	A Note on Notation

	Background
	Introduction to Graph Theory
	Notation
	Cheeger's Inequality
	Effective Resistance
	Expected Commute Time

	Message-Passing Neural Networks
	Graph Convolutional Networks
	Graph Attention Networks

	DropEdge
	The Algorithm
	Effect on Over-smoothing

	Over-squashing
	Sensitivity
	Influence Distribution
	Jacobian Obstruction

	Related Works
	Treating Over-smoothing
	Treating Over-squashing
	Towards a Unified Treatment
	Long Range Graph Benchmarks


	Theory
	DropEdge Random Walk
	Inspecting the Scaling Factor

	Sensitivity in a DropEdge Model
	1-Layer Linear GCN
	L-Layer Linear GCN
	L-layer Nonlinear MPNN
	Monte-Carlo DropEdge


	Experiments
	Signal Propagation
	Propagation Distance
	Effect of DropEdge

	SyntheticZINC
	Experimental Setup
	Results

	Real-World Datasets
	Experimental Setup
	Citation Networks
	Molecular Datasets


	Conclusion
	Key Findings
	Limitations
	Future Directions and Final Remarks


