
ar
X

iv
:2

50
2.

07
36

4v
2

 [
cs

.L
G

]
 2

9
M

ay
 2

02
5

Effects of Dropout on Performance in
Long-range Graph Learning Tasks

Jasraj Singh∗

Independent Researcher
Keyue Jiang

University College London

Brooks Paige
University College London

Laura Toni
University College London

Abstract

Message Passing Neural Networks (MPNNs) are a class of Graph Neural Net-
works (GNNs) that propagate information across the graph via local neigh-
borhoods. The scheme gives rise to two key challenges: over-smoothing and
over-squashing. While several Dropout-style algorithms, such as DropEdge and
DropMessage, have successfully addressed over-smoothing, their impact on over-
squashing remains largely unexplored. This represents a critical gap in the lit-
erature, as failure to mitigate over-squashing would make these methods unsuit-
able for long-range tasks – the intended use case of deep MPNNs. In this work,
we study the aforementioned algorithms, and closely related edge-dropping algo-
rithms – DropNode, DropAgg and DropGNN – in the context of over-squashing.
We present theoretical results showing that DropEdge-variants reduce sensitivity
between distant nodes, limiting their suitability for long-range tasks. To address
this, we introduce DropSens, a sensitivity-aware variant of DropEdge that ex-
plicitly controls the proportion of information lost due to edge-dropping, thereby
increasing sensitivity to distant nodes despite dropping the same number of edges.
Our experiments on long-range synthetic and real-world datasets confirm the pre-
dicted limitations of existing edge-dropping and feature-dropping methods. More-
over, DropSens consistently outperforms graph rewiring techniques designed to
mitigate over-squashing, suggesting that simple, targeted modifications can sub-
stantially improve a model’s ability to capture long-range interactions. Our con-
clusions highlight the need to re-evaluate and re-design existing methods for train-
ing deep GNNs, with a renewed focus on modelling long-range interactions.

1 Introduction

Graph neural networks (GNNs) [51, 71] are powerful neural models developed for modelling
graph-structured data, and have found applications in several real-world scenarios [29, 60, 82, 88–
92, 94, 99]. A popular class of GNNs, called message-passing neural networks (MPNNs) [32], re-
cursively process neighborhood information using message-passing layers. These layers are stacked
to allow each node to aggregate information from increasingly larger neighborhoods, akin to how
convolutional neural networks (CNNs) learn hierarchical features for images [48]. However, un-
like in image-based deep learning, where ultra-deep CNN architectures have led to performance
breakthroughs [38, 78], shallow GNNs often outperform deeper models on many graph learning

∗Part of the work done as a master’s student at UCL. Correspondence at jasraj.singh00150@gmail.com.

Preprint. Under review.

mailto:jasraj.singh00150@gmail.com
https://arxiv.org/abs/2502.07364v2

tasks [97]. This is because deep GNNs suffer from unique issues like over-smoothing [64] and
over-squashing [4], which makes training them notoriously difficult.

Over-smoothing refers to the problem of node representations becoming too similar as they are
recursively processed. This is undesirable since it limits the GNN from effectively utilizing the
information in the input features. The problem has garnered significant attention from the research
community, resulting in a suite of algorithms designed to address it [70] (see Appendix A.1 for
an overview of representative methods). Amongst these methods are a collection of random edge-
dropping algorithms, including DropEdge [68], DropNode [23], DropAgg [43] and DropGNN [65] –
which we will collectively refer to as DropEdge-variants – which act as message-passing reducers.
In addition, we have DropMessage [21], which performs Dropout [77] on the message matrices,
instead of the feature matrices; we will collectively refer to these two methods as Dropout-variants
since they are applied along the feature dimensions.

The other issue specific to GNNs is over-squashing. In certain graph structures, neighborhood size
grows exponentially with distance from the source [12], causing information to be lost as it passes
through graph bottlenecks [4]. This limits MPNNs’ ability to enable communication between distant
nodes, which is crucial for good performance on long-range tasks. To alleviate over-squashing,
several graph-rewiring techniques have been proposed, which aim to improve graph connectivity
by adding edges in a strategic manner [4, 8, 16, 44, 63] (see Appendix A.3 for an overview of
representative methods).2 In contrast, the DropEdge-variants only remove edges, which should, in
principle, amplify over-squashing levels. The same can be intuitively argued about Dropout-variants.

Empirical evidence in support of methods designed for training deep GNNs has been majorly col-
lected on short-range tasks (see Appendix A.2 for a detailed discussion). That is, it simply suggests
that these methods prevent loss of local information, but it remains inconclusive if they facilitate
capturing long-range interactions (LRIs). Of course, on long-range tasks, deep GNNs are useless
if they cannot capture LRIs. This is especially a concern for DropEdge-variants since evidence sug-
gests that alleviating over-smoothing with graph rewiring could exacerbate over-squashing [34, 63].

Contributions. In this work, we precisely characterize the effects of random edge-dropping al-
gorithms on over-squashing in MPNNs. By explicitly computing the expected sensitivity of the
node representations to the node features [79] (inversely related to over-squashing) in a linear Graph
Convolutional Network (GCN) [47], we show that these methods provably reduce the effective re-
ceptive field of the model. Precisely speaking, the rate at which sensitivity between nodes decays
is exponential w.r.t. the distance between them. We also extend the existing theoretical results on
sensitivity in nonlinear MPNNs [8, 18, 84] to the random edge-dropping setting, concluding that
these algorithms exacerbate the over-squashing problem. We use our analysis of GCNs to design a
sensitivity-aware DropEdge-variant, named DropSens, that enjoys the representational expressivity
of DropEdge without suffering from over-squashing, thereby demonstrating how algorithms can be
readily adapted for long-range tasks.

We evaluated the DropEdge- and Dropout-variants on long-range datasets using GCN, Graph Iso-
morphism Network (GIN) [85] and Graph Attention Network (GAT) [81] architectures. Specifically,
we follow the setup in [33] with the SyntheticZINC dataset, in [79] with real-world homophilic
(corresponding to short-range tasks) and heterophilic (long-range tasks) node classification datasets,
and in [8, 44] with graph classification datasets. Our results indicate that while the random dropping
methods improve model performance in short-range tasks, they are often ineffective, and sometimes
even detrimental, to long-range task performance. Finally, we present results for DropSens, which
outperforms state-of-the-art graph rewiring methods aimed at addressing over-squashing at node
classification and graph-classification tasks. These findings point to the importance of re-evaluating
the methods used to train deep GNNs, especially in terms of how well they capture LRIs.

2 Background

Consider a directed graph G = (V, E), with V = [N] := {1, . . . , N} denoting the node set and
E ⊂ V × V the edge set; (j → i) ∈ E if there’s an edge from node j to node i. Let A ∈ {0, 1}N×N

denote its adjacency matrix, such that Aij = 1 if and only if (j → i) ∈ E , and let D := diag (A1N)
denote the in-degree matrix. The geodesic distance, dG (j, i), from node j to node i is the length

2Sometimes, along with removal of some edges to preserve statistical properties of the original topology.

2

of the shortest path starting at node j and ending at node i. Accordingly, the ℓ-hop neighborhood
of a node i can be defined as the set of nodes that can reach it in exactly ℓ ∈ N0 steps, S(ℓ) (i) =
{j ∈ V : dG (j, i) = ℓ}.

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) operate on inputs of the form (G,X), where G encodes the graph
topology and X ∈ RN×H(0)

collects the node features.3 Message-Passing Neural Networks
(MPNNs) [32] are a special class of GNNs which recursively aggregate information from the 1-
hop neighborhood of each node using message-passing layers. An L-layer MPNN is given as

z
(ℓ)
i = Upd(ℓ)

(
z
(ℓ−1)
i ,Agg(ℓ)

(
z
(ℓ−1)
i ,

{
z
(ℓ−1)
j : j ∈ S(1) (i)

}))
, ∀ℓ ∈ [L]

MPNNθ (G,X) =
{
Out

(
z
(L)
i

)
: i ∈ V

} (2.1)

where Z(0) = X , Agg(ℓ) denotes the aggregation functions, Upd(ℓ) the update functions, and Out

the readout function. Since z
(L)
i is a function of the input features of nodes at most L-hops away

from it, its receptive field is given by B(L) (i) := {j ∈ V : dG (j, i) ≤ L}.

For example, a GCN [47] updates node representations as the weighted sum of its neighbors’ repre-
sentations:

Z(ℓ) = σ
(
ÂZ(ℓ−1)W (ℓ)

)
(2.2)

where σ is a point-wise nonlinearity, e.g. ReLU, the propagation matrix, Â, is a graph shift operator,
i.e. Âij ̸= 0 if and only if (j → i) ∈ E or i = j, and W (ℓ) ∈ RH(ℓ−1)×H(ℓ)

is a weight matrix. The
original choice for Â was the symmetrically normalized adjacency matrix Âsym := D̃−1/2ÃD̃−1/2

[47], where Ã = A+ IN and D̃ = diag(Ã1N). However, several influential works have also used
the asymmetrically normalized adjacency, Âasym := D̃−1Ã [36, 50, 72].

2.2 DropEdge-variants

DropEdge [68] is a random data augmentation technique that works by sampling a subgraph of the
input graph in each layer, followed by the addition of self-loops, and uses that for message passing.
Several variants of DropEdge have also been proposed, forming a family of random edge-dropping
algorithms for tackling the over-smoothing problem. For example, DropNode [23] independently
samples nodes and sets their features to 0, followed by rescaling to make the feature matrix unbi-
ased. This is equivalent to setting the corresponding columns of the propagation matrix to 0. In
a similar vein, DropAgg [43] samples nodes that don’t aggregate messages from their neighbors.
This is equivalent to dropping the corresponding rows of the adjacency matrix. Combining these
two approaches, DropGNN [65] samples nodes which neither propagate nor aggregate messages in
a given layer. These algorithms alleviate over-smoothing by reducing the number of messages being
propagated in the graph, thereby slowing down the convergence of node representations.

2.3 Dropout-variants

Dropout is a stochastic regularization technique which reduces over-fitting by randomly dropping
features before each layer. It has been successful with various architectures, like CNNs [77] and
transformers [80], and has also found applications in GNN training. DropMessage [21] is a variant
of Dropout designed specifically for message-passing schemes – it acts directly on the messages over
each edge, instead of the node representations. This reduces the induced variance in the messages
compared to Dropout, DropEdge and DropNode, while at the same time making the method more
effective at alleviating over-smoothing and enabling the training of deep GNNs.

3To keep things simple, we will ignore edge features.

3

2.4 Over-squashing

Over-squashing refers to the problem of information from exponentially growing neighborhoods
[11] being squashed into finite-sized node representations [4]. [79] formally characterized over-
squashing in terms of the Jacobian of the node-level representations w.r.t. the input features:
∥∂z(L)

i /∂xj∥1. Accordingly, over-squashing can be understood as low sensitivity between distant
nodes, i.e. small perturbations in a node’s features don’t effect other distant nodes’ representations.

See Appendix A for an extensive discussion of related works addressing the problems of over-
smoothing and over-squashing, and a unified treatment of the two.

3 Sensitivity Analysis

In this section, we perform a theoretical analysis of the expectation – w.r.t. random edge masks –
of sensitivity of node representations. This will allow us to predict how DropEdge-variants affect
communication between nodes at various distances, which is relevant for predicting their suitability
towards learning LRIs.

Here, we present our analysis for linear GCNs, and treat more general nonlinear MPNN architectures
in Appendix C.1. In this model, the final node representations can be summarised as

Z(L) =

(
L∏

ℓ=1

Â(ℓ)

)
XW ∈ RN×H(L)

(3.1)

where W :=
∏L

ℓ=1 W
(ℓ) ∈ RH(0)×H(L)

. Using the i.i.d. assumption on the distribution of edge
masks in each layer, the expected sensitivity of node i to node j can be shown to be

EM(1),...,M(L)

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
=

(
E
[
Â
]L)

ij

∥W ∥1 (3.2)

To keep things simple, we will ignore the effect of DropEdge-variants on the optimization trajectory.
Accordingly, it is sufficient to study E[Â] in order to predict their effect on over-squashing. To
maintain analytical tractability, we assume the use of an asymmetrically normalized adjacency
matrix for message-passing, Â = Âasym.

Lemma 3.1. The expected propagation matrix under DropEdge is given as:

Ṗii := EDE

[
Âii

]
=

1− qdi+1

(1− q) (di + 1)

Ṗij := EDE

[
Âij

]
=

1

di

(
1− 1− qdi+1

(1− q) (di + 1)

) (3.3)

where q ∈ [0, 1) is the dropping probability.

See Appendix B.1 for a proof, and a similar treatment of DropNode, DropAgg and DropGNN.

1-Layer Linear GCNs. ∀q ∈ (0, 1) we have

Ṗii =
1

di + 1

di∑
k=0

qk >
1

di + 1

Ṗij =
1

di

(
1− Ṗii

)
<

1

di + 1

(3.4)

where the right-hand sides of the two inequalities are the corresponding entries in the propagation
matrix of a NoDrop model. Equations 3.3, 3.4, B.16 and B.17 together imply the following result:

Lemma 3.2. In a 1-layer linear GCN with Â = Âasym, using DropEdge, DropAgg or DropGNN

4

(a) Entries of Ṗ 6 decay at exponential rate w.r.t. distance between
nodes, and polynomial rate w.r.t. to the DropEdge probability.

(b) MC-approximation of influ-
ence distribution in ReLU-GCNs.

Figure 1: Empirical sensitivity analysis using the Cora dataset.

1. increases the sensitivity of a node’s representations to its own input features, and

2. decreases the sensitivity to its neighbors’ features.

L-layer Linear GCNs. Unfortunately, we cannot draw similar conclusions in L-layer networks, for
nodes at arbitrary distances. To see this, view Ṗ as the transition matrix of a non-uniform random
walk. This walk has higher self-transition (i = j) probabilities than in a uniform augmented random
walk (P = Âasym, q = 0), but lower inter-node (i ̸= j) transition probabilities. Note that ṖL

and PL store the L-step transition probabilities in the corresponding walks. Then, since the paths
connecting the nodes i ∈ V and j ∈ B(L−1) (i) may involve self-loops, (ṖL)ij may be lower
or higher than (PL)ij . Therefore, we cannot conclude how sensitivity between nodes separated
by at most L − 1 hops changes. For nodes L-hops away, however, we can show that DropEdge
always decreases the corresponding entry in ṖL, reducing the effective reachability of GCNs. Using
Equations B.16 and B.17, we can show the same for DropAgg and DropGNN, respectively.

Theorem 3.1. In an L-layer linear GCN with Â = Âasym, using DropEdge, DropAgg or DropGNN
decreases the sensitivity of a node i ∈ V to another node j ∈ S(L) (i), thereby reducing its effective
receptive field. Moreover, the sensitivity decreases with increasing dropping probability.

See Appendix B.2 for a precise quantitative statement and the proof.

Nodes at Arbitrary Distances. Although no general statement could be made about the change in
sensitivity between nodes up to L−1 hops away, we can analyze such pairs empirically. We compute
the L-hop transition matrix ṖL – proportional to expected sensitivity in linear GCNs under DropE-
dge – for the Cora dataset, and average the entries after binning node pairs by the shortest distance
between them. The results are shown in Figure 1a. In the left subfigure, we observe that the expected
sensitivity decays at an exponential rate with increasing distance between the corresponding nodes.
In the middle subfigure, we observe that DropEdge increases the expected sensitivity between nodes
close to each other (0-hop and 1-hop neighbors) in the original topology, but reduces it between
nodes farther off. Similar conclusions can be made with the symmetrically normalized propagation
matrix (see Appendix D.1). Note that the over-squashing effects of DropAgg and DropGNN would,
in theory, be even more severe, as suggested by Equations B.16 and B.17.

Nonlinear MPNNs. While linear networks are useful in simplifying the theoretical analysis, they
are often not practical. In Appendix C.1, we treat the upper bounds on sensitivity established in
previous works, and extend them to the DropEdge-variants. Even still, although theoretical bounds
offer valuable guarantees, they can be arbitrarily loose in the absence of error quantification, making
their practical relevance unclear. To reliably conclude the empirical behaviour of DropEdge- and
Dropout-variants, we turn to Monte Carlo simulations with ReLU-GCNs; see Appendix D.3 for a
description of the experiment setup. Figure 1b compares the influence of the source nodes [84] at
different distances using a dropout probability of 0.5. We observe that while the effect of DropNode
on the sensitivity profile – as compared to the baseline NoDrop – is relatively insignificant, models
using DropEdge, DropAgg and DropGNN have remarkably lower sensitivity to distant nodes, as
predicted by our theory.

5

Figure 2: Train and test MAE of 11-layer GCNs on the SyntheticZINC dataset, averaged over 10 initializations.

4 Sensitivity-Aware DropEdge

Lemma 3.1 tells us that DropEdge decreases the weight of cross-edges, (j → i), in the expected
propagation matrix, i.e. the strength of message passing over these edges decreases. The fraction of
information preserved over a cross-edge is dependent only on the dropping probability and the target
node’s in-degree, di. We can directly control this quantity using a per-edge dropping probability, qi,
dependent only on the receiving node’s in-degree:

c =
EDE[Âij]

END[Âij]
=

di + 1

di

(
1− 1− qdi+1

i

(1− qi) (di + 1)

)
=⇒ 1− c =

qi − qdi+1
i

di (1− qi)
(4.1)

where c is the fraction of information preserved, e.g. 95%. We can solve for qi and mask the incom-
ing edges to node i accordingly; we name this algorithm DropSens. In Appendix E.3, we present
a Python implementation of the algorithm, as well as a computationally efficient approximation to
Equation 4.1. In Figure 1b, we observe that DropSens improves sensitivity between distant nodes,
compared to DropEdge.

5 Experiments

Our theoretical analysis indicates that random dropping may degrade the performance of GNNs in
tasks that depend on capturing LRIs. In this section, we test this hypothesis by evaluating DropEdge-
and Dropout-variants on both synthetic and real-world datasets. A complete description of the
datasets is provided in Appendix E.1, and the experimental details are in Appendix E.2.

5.1 Synthetic Datasets

SyntheticZINC [33] is a synthetic variant of the ZINC dataset [42], designed to study the effect of
information mixing in graph learning. Node features are sparsely assigned, and the target requires
non-linear mixing of two selected nodes’ features, chosen based on their commute time [10]. We
vary the mixing level and evaluate an 11-layer GCN, ensuring sufficient message passing. For better
readability, we only test DropEdge, Dropout and DropMessage – the three more popular methods
used for training deep GNNs.

The results are presented in Figure 2, where we can observe that the mean absolute error (MAE)
increases with the commute time percentile used to select the node pairs, as was hypothesized and
evidenced in [33]. Additionally, we observe that both train and test performance decline when using
dropout with a probability as low as 0.2, and even more so with a higher probability of 0.5. These
results provide strong evidence for the detrimental effects of dropout methods in modelling long-
range interactions, supporting our theoretical analysis.

5.2 Real-world Datasets

To test the dropping methods on real-world datasets, we use the GCN, GIN [85] and GAT [81]
architectures – GCN and GIN satisfy the model assumptions made in all the theoretical results pre-

6

Table 1: Difference in mean test accuracy (%) between the best performing configuration of each dropout
method and the baseline NoDrop model. Cell colors represent p-values from a t-test evaluating whether dropout
improves performance: green indicates significance at 90% confidence, while red denotes insignificant results.

(a) Node classification tasks.

GNN Dropout Homophilic Networks Heterophilic Networks
Cora CiteSeer PubMed Chameleon Squirrel TwitchDE

GCN

DropEdge +0.419 +0.686 +0.385 −0.634 +0.009 −0.093

DropNode +0.373 +0.197 +0.841 −0.674 −0.656 −0.113

DropAgg +0.224 +0.486 −0.245 −10.640 −13.970 −6.674

DropGNN +0.396 +0.820 +0.506 −1.774 −0.291 −0.395

Dropout +0.628 +0.128 +1.218 −1.395 −0.110 −0.260

DropMessage +0.030 −0.388 +1.217 +1.322 +0.320 +0.160

GIN

DropEdge −0.276 −0.529 −0.034 −0.726 +0.289 −0.124

DropNode +0.379 +0.926 +0.296 −1.832 −0.265 −0.171

DropAgg +0.095 −0.254 −0.487 −1.153 +0.275 +0.205

DropGNN −0.478 −2.284 −1.366 −1.642 −0.066 −0.008

Dropout +1.347 +0.011 +0.368 −2.702 −0.152 −0.573

DropMessage +2.602 +0.219 +1.030 +0.943 +0.108 −0.025

(b) Graph classification tasks.

GNN Dropout Molecular Networks Social Networks
Mutag Proteins Enzymes Reddit IMDb Collab

GCN

DropEdge −1.100 +1.750 −0.589 −8.380 +1.300 −1.145

DropNode −5.100 +2.339 −2.292 −7.440 +2.720 −4.054

DropAgg −0.900 +1.214 −0.553 −16.460 +3.580 −30.386

DropGNN −0.200 +1.589 −2.918 −11.860 +1.540 +0.705

Dropout −0.300 +2.018 −6.208 −6.050 +1.240 −1.729

DropMessage +2.000 +2.143 −4.906 −7.360 +1.300 −0.330

GIN

DropEdge −1.100 −1.804 −4.716 −2.700 −1.820 −0.642

DropNode −3.800 −2.911 −0.493 +0.550 −0.120 +1.206

DropAgg −3.800 −1.982 −0.640 +0.930 −1.640 −5.943

DropGNN −7.000 −2.750 −3.694 +1.210 −5.200 −6.593

Dropout −2.400 −3.446 −2.047 +2.590 −1.180 −0.180

DropMessage −3.600 −1.125 −0.302 +0.850 −0.460 +1.126

sented in Section 3, while GAT does not satisfy any of them, since the attention scores are computed
as a function of all the node representations. Therefore, GCN, GIN and GAT together provide a
broad representation of different MPNN architectures. We present the results for GCN and GIN
in the main text, since these models were used as baselines in a majority of works on alleviating
over-squashing [4, 5, 8, 35, 44, 67, 79]; the results for GAT are reported in Table 6.

For each dataset−model−dropout combination, we perform 20 independent runs to find the best
performing dropout configuration; results are reported in Table 9. We then perform a t-test to assess
whether dropout improves performance, using 50 samples from the NoDrop model (q = 0) and 50
samples from the best performing dropout configuration.4 In this section, we report the p-values of
the tests, and in Table 7, we report the effect sizes as Hedges’ g statistic [39].

Node-classification. Although determining whether a task requires modelling LRIs can be chal-
lenging, understanding the structure of the datasets can provide important insight. For example,
homophilic datasets have local consistency in node labels, i.e. nodes closely connected to each other
have similar labels. On the other hand, in heterophilic datasets, nearby nodes often have dissimilar
labels. Since DropEdge-variants increase the sensitivity of a node’s representations to its immedi-
ate neighbors, and reduce its sensitivity to distant nodes, we expect it to improve performance on
homophilic datasets but harm performance on heterophilic ones; such a setup was also used in [79].

4The t-test assumes that both samples are drawn from normal distributions – all Shapiro-Wilk tests for
non-normality of samples [74] failed at 90% confidence.

7

Figure 3: Relative change in test-time performance of a GCN using DropSens, compared to the baseline
DropEdge, on real-world datasets from Section 5.2.

In this work, we use Cora [57], CiteSeer [31] and PubMed [62] as representatives of homophilic
datasets [52, 98], and Squirrel, Chameleon and TwitchDE [69] to represent heterophilic datasets
[52]. The networks’ statistics are presented in Table 4, where we can note the remarkably lower
homophily measures of heterophilic datasets.

The results are presented in Table 1a. It is clear to see that dropout significantly improves test perfor-
mance on homophilic datasets – with 40/54 ≈ 74% cases performing better than the corresponding
NoDrop baseline – indicating that these methods are indeed beneficial in tackling short-range tasks.
On the other hand, with the heterophilic datasets, the improvement is insignificant. Rather, in most
(45/54 ≈ 83%) cases, the best dropout configuration performs worse than the NoDrop baseline.
This suggests that the dropping methods harm generalization in long-range tasks by forcing models
to overfit to short-range signals (see Appendix F.3 for supporting evidence).

Graph-classification. Several graph classification datasets have also been identified as long-range
tasks, like the molecular networks datasets Mutag [17], Proteins [19] and Enzymes [9], and the
social networks datasets Reddit, IMDb and Collab [87]. These datasets have also been used for
evaluation in previous works on over-squashing, including [8, 44].

The results are shown in Table 1b, where we observe that dropout methods generally have insignif-
icant effects on model performance, and often even a non-positive effect (67/108 ≈ 62% cases).
Notably, the p-values are lower as compared to those recorded for heterophilic datasets in Table 1a,
i.e. higher evidence for efficacy of dropping methods. We conjecture that over-squashing may have
limited impact on model performance in graph-level tasks since the aggregation module eventually
mixes information from distant nodes for computing graph-level representations.

5.3 Evaluating DropSens

We start by comparing DropSens with DropEdge on real-world datasets from Section 5.2, illustrating
how algorithms can be readily adapted for better suitability at modelling LRIs. In Figure 3, we
present the relative change in error rate (1 − Acc) of DropSens w.r.t. DropEdge, with GCN as the
base model. It is clear to observe a uniform improvement in the performance on long-range tasks,
suggesting that addressing over-squashing using DropSens can enhance the effectiveness of GCNs.

We now benchmark DropSens against state-of-the-art graph-rewiring techniques designed specifi-
cally to tackle over-squashing (see Appendix A.3 for their descriptions). We train a GCN on node
classification tasks, following the setup in [79], and both GCN and GIN on graph classification tasks,
following [8, 44]. The results with GCN are reported in Table 2a and Table 2b, where we find that
DropSens outperforms other methods in node classification tasks, and performs competitively in
graph classification tasks. In addition to superior performance, another advantage of DropSens over
the other methods is that it significantly reduces the number of messages being propagated, thereby
tackling the problem of over-smoothing and increasing training speed.

The results with GIN are presented in Appendix G.3, where we observe that DropSens does not per-
form competitively – unsurprising, since DropSens was specifically designed to work with GCN’s
message-passing scheme.

8

Table 2: Performance of GCN with graph rewiring methods. First, second, and third best results are coloured.

(a) Node-classification tasks – results for other methods taken from [79, Table 2].

Rewiring Cora CiteSeer PubMed Chameleon Squirrel Actor
None 81.89 72.31 78.16 41.33 30.32 23.84

Undirected - - - 42.02 35.53 21.45

+FA 81.65 70.47 79.48 42.67 36.86 24.14

DIGL (PPR) 83.21 73.29 78.84 42.02 33.22 24.77

DIGL + Undirected - - - 42.68 32.48 25.45
SDRF 82.76 72.58 79.10 42.73 37.05 28.42

SDRF + Undirected - - - 44.46 37.67 28.35
DropSens 84.98 73.35 84.30 53.01 41.32 22.38

(b) Graph-classification tasks – results for other methods from [8, Table 1].

Rewiring Mutag Proteins Enzymes Reddit IMDb Collab
None 72.15 70.98 27.67 68.26 49.77 33.78

Last FA 70.05 71.02 26.47 68.49 48.98 33.32

Every FA 70.45 60.04 18.33 48.49 48.17 51.80
DIGL 79.70 70.76 35.72 76.04 64.39 54.50
SDRF 71.05 70.92 28.37 68.62 49.40 33.45

FoSR 80.00 73.42 25.07 70.33 49.66 33.84

GTR 79.10 72.59 27.52 68.99 49.92 33.05

DropSens 70.20 70.61 36.01 77.44 49.32 61.68

6 Conclusion

There exists an important gap in our understanding of several algorithms designed for training deep
GNNs – while their positive effects on model performance have been well-studied, making them
popular choices for training deep GNNs, their evaluation has been limited to short-range tasks.
This is rooted in a key assumption: that if a deep GNN is trainable, it must also be capable of
modelling LRIs. As a result, potential adverse effects of these algorithms on capturing LRIs have
been overlooked. Our results challenge this assumption – we theoretically and empirically show that
DropEdge- and Dropout-variants exacerbate the over-squashing problem in deep GNNs, and degrade
performance on long-range tasks. This highlights the need for a more comprehensive evaluation of
common training practices for deep GNNs, with special emphasis on their capacity to capture LRIs.
This is crucial for building confidence in their use beyond controlled benchmarks.

Limitations. While our theoretical analysis successfully predicts how DropEdge-variants affect test
performance on short-range and long-range tasks, it is based on several simplifying assumptions
on the message-passing scheme. These assumptions, although standard in the literature, limit the
generalizability of our conclusions to other architectures, including ResGCNs [51], GATs [81], and
Graph Transformers [83]. Additionally, an important limitation of DropSens is that it requires an
architecture-specific alteration to the edge-dropping strategy, which is not practical in general. As
also mentioned in Section 4, we did not intend to introduce DropSens as a benchmark, but rather
to demonstrate how methods designed for alleviating over-smoothing can be readily adapted to
simultaneously control over-squashing.

Future Directions. Currently, real-world datasets are classified as short- or long-range tasks based
on extensive model training [4] or weak proxy measures like node homophily [79]. Developing a
reliable measure of information mixing in the ground-truth data could greatly benefit the research
community. Such a measure would enable more precise identification of short-, intermediate- and
long-range tasks, improving evaluation and benchmarking. Another interesting direction is to in-
vestigate the significance of over-squashing in graph-level tasks, where the aggregation module of
MPNNs enables some mixing of information from distant nodes. To the best of our knowledge, [33]
is the only work that directly addresses this question, offering strong theoretical insights. However,
empirical validation of these effects remains limited.

9

References
[1] Zeyuan Allen-Zhu, Aditya Bhaskara, Silvio Lattanzi, Vahab Mirrokni, and Lorenzo Orecchia.

Expanders via local edge flips. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’16, pp. 259–269, USA, 2016. Society for Industrial
and Applied Mathematics.

[2] N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators.
Journal of Combinatorial Theory, Series B, 38(1):73–88, February 1985.

[3] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, June 1986.

[4] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical impli-
cations. In International Conference on Learning Representations, 2021.

[5] Adrián Arnaiz-Rodrı́guez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. Diffwire:
Inductive graph rewiring via the lovász bound. In Bastian Rieck and Razvan Pascanu (eds.),
Proceedings of the First Learning on Graphs Conference, volume 198 of Proceedings of Ma-
chine Learning Research, pp. 15:1–15:27. PMLR, 12 2022.

[6] Pradeep Kr. Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar.
Oversquashing in gnns through the lens of information contraction and graph expansion. In
2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pp. 1–8. IEEE Press, 2022.

[7] Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo
Silva. The logical expressiveness of graph neural networks. In International Conference on
Learning Representations, 2020.

[8] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquash-
ing in GNNs through the lens of effective resistance. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 2528–2547. PMLR, 07 2023.

[9] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J.
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics,
21(suppl 1):i47–i56, 06 2005.

[10] Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, and Prasoon Ti-
wari. The electrical resistance of a graph captures its commute and cover times. computational
complexity, 6:312–340, 1989.

[11] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 941–949, 2018.

[12] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional net-
works via importance sampling. In International Conference on Learning Representations,
2018.

[13] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1725–1735. PMLR, 07 2020.

[14] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciencesstical power analysis for
the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale, NJ, 2 edition, 1988.

[15] Colin Cooper, Martin Dyer, Catherine Greenhill, and Andrew Handley. The flip markov chain
for connected regular graphs. Discrete Applied Mathematics, 254:56–79, 2019.

[16] Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In NeurIPS
2022 Workshop: New Frontiers in Graph Learning, 2022.

10

[17] Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman,
and Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of
Medicinal Chemistry, 34(2):786–797, Feb 1991.

[18] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and
Michael M Bronstein. On over-squashing in message passing neural networks: The impact
of width, depth, and topology. In International Conference on Machine Learning, pp. 7865–
7885. PMLR, 2023.

[19] Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of Molecular Biology, 330(4):771–783, 2003.

[20] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

[21] Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang.
Dropmessage: Unifying random dropping for graph neural networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(4):4267–4275, Jun. 2023.

[22] Tomas Feder, Adam Guetz, Milena Mihail, and Amin Saberi. A local switch markov chain on
given degree graphs with application in connectivity of peer-to-peer networks. In 2006 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 69–76, 2006.

[23] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 22092–22103. Curran Associates,
Inc., 2020.

[24] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[25] Rickard Brüel Gabrielsson, Mikhail Yurochkin, and Justin Solomon. Rewiring with positional
encodings for graph neural networks. Transactions on Machine Learning Research, 2023.

[26] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli
approximate variational inference, 2016.

[27] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Pro-
ceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pp. 1050–1059, New York, New York, USA, 06 2016.
PMLR.

[28] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in re-
current neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

[29] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1416–1424. ACM, 2018.

[30] George Giakkoupis. Expanders via local edge flips in quasilinear time. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pp. 64–76, New
York, NY, USA, 2022. Association for Computing Machinery.

[31] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: an automatic citation indexing
system. In Proceedings of the Third ACM Conference on Digital Libraries, DL ’98, pp. 89–98,
New York, NY, USA, 1998. Association for Computing Machinery.

11

[32] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 1263–1272. PMLR, 08 2017.

[33] Francesco Di Giovanni, T. Konstantin Rusch, Michael Bronstein, Andreea Deac, Marc Lack-
enby, Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power of
GNNs? Transactions on Machine Learning Research, 2024.

[34] Jhony H. Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D. Malliaros.
On the trade-off between over-smoothing and over-squashing in deep graph neural networks.
In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, CIKM ’23, pp. 566–576, New York, NY, USA, 2023. Association for Computing
Machinery.

[35] Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni.
DRew: Dynamically rewired message passing with delay. In International Conference on
Machine Learning, pp. 12252–12267. PMLR, 2023.

[36] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[37] Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield,
Krishna Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive con-
nection sampling, 2020.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, 2016.

[39] Larry V. Hedges. Distribution theory for glass’s estimator of effect size and related estima-
tors. Journal of Educational Statistics, 6(2):107–128, 2025/03/15/ 1981. Full publication date:
Summer, 1981.

[40] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[41] Lei Huang, Jie Qin, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Normalization techniques in
training dnns: Methodology, analysis and application, 2020.

[42] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman.
ZINC: a free tool to discover chemistry for biology. J Chem Inf Model, 52(7):1757–1768, June
2012.

[43] Bo Jiang, Yong Chen, Beibei Wang, Haiyun Xu, and Bin Luo. Dropagg: Robust graph neural
networks via drop aggregation. Neural Networks, 163:65–74, 2023.

[44] Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. FoSR: First-order spectral
rewiring for addressing oversquashing in GNNs. In The Eleventh International Conference
on Learning Representations, 2023.

[45] Kenji Kawaguchi. Deep learning without poor local minima. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 29. Curran Associates, Inc., 2016.

[46] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

[47] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

12

[48] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, R. Howard, Wayne Hubbard,
and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. In
D. Touretzky (ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-
Kaufmann, 1989.

[49] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as
deep as cnns? In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
9266–9275, 2019.

[50] Qimai Li, Zhichao Han, and Xiao-ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. Proceedings of the AAAI Conference on Artificial Intelligence,
32(1), 04 2018.

[51] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence
neural networks. In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

[52] Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on
non-homophilous graphs. arXiv preprint arXiv:2104.01404, 2021.

[53] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, 2020.

[54] Yang Liu, Chuan Zhou, Shirui Pan, Jia Wu, Zhao Li, Hongyang Chen, and Peng Zhang.
Curvdrop: A ricci curvature based approach to prevent graph neural networks from over-
smoothing and over-squashing. In Proceedings of the ACM Web Conference 2023, WWW
’23, pp. 221–230, New York, NY, USA, 2023. Association for Computing Machinery.

[55] L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty, 2(1):
1–46, 1993.

[56] Peter Mahlmann and Christian Schindelhauer. Peer-to-peer networks based on random trans-
formations of connected regular undirected graphs. In Proceedings of the Seventeenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’05, pp. 155–164,
New York, NY, USA, 2005. Association for Computing Machinery.

[57] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3(2):127–
163, 07 2000.

[58] Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

[59] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta,
Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán
Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Sco-
patz. Sympy: symbolic computing in python. PeerJ Computer Science, 3:e103, January 2017.

[60] Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion with
recurrent multi-graph neural networks. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[61] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Mar-
ion Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In
ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

[62] Galileo Mark Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active sur-
veying for collective classification. In International Workshop on Mining and Learning with
Graphs, Edinburgh, Scotland, 2012. MLG.

13

[63] Khang Nguyen, Hieu Nong, Vinh Nguyen, Nhat Ho, Stanley Osher, and Tan Nguyen. Revis-
iting over-smoothing and over-squashing using ollivier-ricci curvature. In Proceedings of the
40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[64] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020.

[65] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 21997–22009. Curran Associates, Inc., 2021.

[66] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. In International Conference on Learning Represen-
tations, 2020.

[67] Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den Broeck, Mathias
Niepert, and Christopher Morris. Probabilistically rewired message-passing neural networks.
In The Twelfth International Conference on Learning Representations, 2024.

[68] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations, 2020.

[69] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale Attributed Node Embedding.
Journal of Complex Networks, 9(2), 2021.

[70] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmooth-
ing in graph neural networks, 2023.

[71] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80,
2009.

[72] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks, 2017.

[73] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor
Huhn, and Dietmar Schomburg. BRENDA, the enzyme database: updates and major new
developments. Nucleic Acids Res, 32(Database issue):D431–3, January 2004.

[74] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples).
Biometrika, 52(3/4):591–611, 2025/03/12/ 1965. Full publication date: Dec., 1965.

[75] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. Relational Representation Learning Workshop,
NeurIPS 2018, 2018.

[76] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing markov chains. Information and Computation, 82(1):93–133, 1989.

[77] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

[78] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.

[79] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curva-
ture. In International Conference on Learning Representations, 2022.

14

[80] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[81] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning Rep-
resentations, 2018.

[82] Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. In Sixth International Conference on Data Mining (ICDM’06), pp.
678–689, 2006.

[83] Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion
Stoica. Representing long-range context for graph neural networks with global attention. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

[84] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5453–5462.
PMLR, 07 2018.

[85] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019.

[86] Han Xuanyuan, Tianxiang Zhao, and Dongsheng Luo. Shedding light on random dropping and
oversmoothing. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

[87] Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’15, pp. 1365–1374, New York, NY, USA, 2015. Association for Computing Machinery.

[88] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’18, pp. 974–983, New York, NY, USA, 2018. Association for Computing
Machinery.

[89] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
5812–5823. Curran Associates, Inc., 2020.

[90] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision
help graph convolutional networks? In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 10871–10880. PMLR, 07 2020.

[91] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. L2-gcn: Layer-wise and
learned efficient training of graph convolutional networks. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2124–2132, 2020.

[92] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Bringing your own view:
Graph contrastive learning without prefabricated data augmentations. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining, WSDM ’22, pp.
1300–1309, New York, NY, USA, 2022. Association for Computing Machinery.

[93] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In Interna-
tional Conference on Learning Representations, 2020.

[94] Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and
Karthik Subbian. Cold brew: Distilling graph node representations with incomplete or missing
neighborhoods. In International Conference on Learning Representations, 2022.

15

[95] Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards
deeper graph neural networks with differentiable group normalization. In Advances in neural
information processing systems, 2020.

[96] Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu.
Dirichlet energy constrained learning for deep graph neural networks. Advances in neural
information processing systems, 2021.

[97] Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi
Feng. Understanding and resolving performance degradation in deep graph convolutional net-
works. In Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, pp. 2728–2737, 2021.

[98] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 7793–7804. Curran Associates, Inc., 2020.

[99] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 07 2017.

16

Appendix

Table of Contents
A Related Works 17

A.1 Methods for Alleviating Over-smoothing . 17
A.2 Homophily Bias in Evaluation of Techniques for Deep GNN 18
A.3 Methods for Alleviating Over-squashing . 19
A.4 Towards a Unified Treatment . 20

B Proofs 20
B.1 Expected Propagation Matrix under DropEdge-variants 20
B.2 Sensitivity in L-layer Linear GCNs . 22

C Theoretical Extensions 23
C.1 Sensitivity in Nonlinear MPNNs . 23
C.2 Test-time Monte-Carlo Dropout . 24

D Empirical Sensitivity Analysis 24
D.1 Symmetrically Normalized Propagation Matrix 25
D.2 Upper Bound on Expected Sensitivity . 25
D.3 MC-Approximation of Sensitivity in Nonlinear MPNNs 26

E Experiments Details 26
E.1 Descriptions of the Datasets . 26
E.2 Training Configurations . 27
E.3 DropSens Implementation . 28

F Supplementary Experiments 29
F.1 Test Accuracy versus DropEdge Probability . 29
F.2 Remark on DropNode . 30
F.3 Over-squashing or Under-fitting? . 30

G Supplementary Experimental Results 31
G.1 Performance of GAT with Dropping Methods 31
G.2 Effect Size in Statistical Tests . 31
G.3 Performance of GIN with DropSens . 33
G.4 Best-performing Dropping Probabilities . 33

A Related Works

A.1 Methods for Alleviating Over-smoothing

A popular choice for reducing over-smoothing in GNNs is to regularize the model. Recall that
DropEdge [68] implicitly regularizes the model by adding noise to it (Section 2.2). A similarly
regularization effect is observed with the methods discussed in the main text – DropNode [23],
DropAgg [43], DropGNN [65], Dropout [77] and DropMessage [21]. Graph Drop Connect (GDC)
[37] combines DropEdge and DropMessage together, resulting in a layer-wise sampling scheme
that uses a different subgraph for message-aggregation over each feature dimension. These meth-
ods successfully addressed the over-smoothing problem, enabling the training of deep GNNs, and
performed competitively on several benchmarking datasets.

17

Table 3: Statistics of node-classification datasets. Homophily measures as defined in [52].

Dataset Nodes Edges Features Classes Homophily
Homophilic Networks

Reddit 232,965 114,615,892 602 41 0.653
OGBN-ArXiv 169,343 1,166,243 128 40 0.416
Coauthor-CS 18,333 163,788 6,805 15 0.755

Coauthor-Physics 34,493 495,924 8,415 5 0.847
Wiki-CS 11,701 216,123 300 10 0.568

Amazon-Computers 13,752 491,722 767 10 0.700
Amazon-Photo 7,650 238,162 745 8 0.772

Heterophilic Networks
Flickr 89,250 899,756 500 7 0.070

Cornell 183 298 1,703 5 0.031
Texas 183 325 1,703 5 0.001

Wisconsin 251 515 1,703 5 0.094

Another powerful form of implicit regularization is feature normalization, which has proven crucial
in enhancing the performance and stability of several types of neural networks [41]. Exploiting
the inductive bias in graph-structured data, normalization techniques like PairNorm [93], Differen-
tiable Group Normalization (DGN) [95] and NodeNorm [97] have been proposed to reduce over-
smoothing in GNNs. On the other hand, Energetic Graph Neural Networks (EGNNs) [96] explicitly
regularize the optimization by constraining the layer-wise Dirichlet energy to a predefined range.

In a different vein, motivated by the success of residual networks (ResNets) [38] in computer vision,
[49] proposed the use of residual connections to prevent the smoothing of representations. Residual
connections successfully improved the performance of GCN on a range of graph-learning tasks.
[13] introduced GCN-II, which uses skip connections from the input to all hidden layers. This layer
wise propagation rule has allowed for training of ultra-deep networks – up to 64 layers. Some other
architectures, like the Jumping Knowledge Network (JKNet) [84] and the Deep Adaptive GNN
(DAGNN) [53], aggregate the representations from all layers, {z(ℓ)

i }Lℓ=1, before processing them
through a readout layer.

A.2 Homophily Bias in Evaluation of Techniques for Deep GNN

We examine the evaluation protocols commonly used for assessing methods aimed at alleviating
over-smoothing in deep GNNs – many of which are also widely adopted for training deep archi-
tectures. Notably, we highlight a misalignment between the intended goal of these methods – to
improve the trainability of deep GNNs – and their evaluation, which is often restricted to short-
range tasks.

For example, DropEdge [68] was evaluated on Cora [57], CiteSeer [31], PubMed [62], and a version
of Reddit [36] distinct from the one used in our experiments. The first three exhibit high label ho-
mophily (see Table 4) and are known to be better modelled by shallower networks [95]. Reddit also
displays strong homophily, as can be seen in Table 3. Similarly, DropNode [23] was evaluated on
Cora, CiteSeer, and PubMed; DropAgg [43] on Cora ML, CiteSeer, and OGBN-ArXiv [40], which
has moderate homophily; DropMessage [68] was evaluated on Cora, CiteSeer, PubMed, OGBN-
ArXiv, and Flickr, with only the latter having low homophily; GDC [37] was evaluated on Cora,
Cora ML and CiteSeer.

A similar trend can be observed in the evaluation of feature normalization techniques used to regular-
ize GNNs. PairNorm [93] and DGN [95] were evaluated on Cora, CiteSeer, PubMed, and Coauthor-
CS [75]; NodeNorm [97] on Cora, CiteSeer, PubMed, Coauthor-CS, Wiki-CS [58], and Amazon-
Photo [75]; and EGNNs [96] on Cora, PubMed, Coauthor-Physics [75], and OGBN-ArXiv – all of
these datasets are highly homophilic.

18

A similar trend is observed in the evaluation of architectural modifications designed to enable deeper
GNNs. GCN-II [13] on Cora, CiteSeer, PubMed, and Chameleon; JKNet [84] on Cora, CiteSeer, and
Reddit; and DAGNN [53] on Cora, CiteSeer, PubMed, Coauthor-CS, Coauthor-Physics, Amazon-
Computers [75], and Amazon-Photo – many of these datasets are highly homophilic as well.

This pattern indicates that an overwhelming proportion of evaluations have been restricted to short-
range, homophilic tasks. Such a narrow focus risks overstating the general effectiveness of these
methods and masking their potential limitations in long-range scenarios.

A few exceptions stand out. DropGNN [65], which was evaluated on graph-classification from
the TUDataset [61], aligning more closely with evaluations of rewiring methods targeting over-
squashing [8, 44]. NodeNorm, while primarily evaluated on homophilic datasets, was also tested
on three heterophilic graphs: Cornell, Texas, and Wisconsin [66]. GCN-II saw broader evalua-
tion, including on several long-range tasks such as Chameleon, Cornell, Texas, Wisconsin, and the
Protein-Protein Interaction (PPI) networks [36]. Lastly, JKNet was also evaluated on the PPI net-
works.

A.3 Methods for Alleviating Over-squashing

In this section, we will review some of the graph rewiring methods proposed to address the problem
of over-squashing. Particularly, we wish to emphasize a commonality among these methods – edge
addition is necessary. As a reminder, graph rewiring refers to modifying the edge set of a graph by
adding and/or removing edges in a systematic manner. In a special case, which includes many of
the rewiring techniques we will discuss, the original topology is completely discarded, and only the
rewired graph is used for message-passing.

Spatial rewiring methods use the topological relationships between the nodes in order to come up
with a rewiring strategy. That is the graph rewiring is guided by the objective of optimizing some
chosen topological properties. For instance, [4] introduced a fully-adjacent (FA) layer, wherein mes-
sages are passed between all nodes. GNNs using a FA layer in the final message-passing step were
shown to outperform the baselines on a variety of long-range tasks, revealing the importance of in-
formation exchange between far-off nodes which standard message-passing cannot facilitate. [79]
proposed a curvature-based rewiring strategy, called the Stochastic Discrete Ricci Flow (SDRF),
which aims to reduce the “bottleneckedness” of a graph by adding suitable edges, while simulta-
neously removing edges in an effort to preserve the statistical properties of the original topology.
[8] proposed the Greedy Total Resistance (GTR) technique, which optimizes the graph’s total re-
sistance by greedily adding edges to achieve the greatest improvement. One concern with graph
rewiring methods is that unmoderated densification of the graph, e.g. using a fully connected graph
for propagating messages, can result in a loss of the inductive bias the topology provides, potentially
leading to over-fitting. Accordingly, [35] propose a Dynamically Rewired (DRew) message-passing
framework that gradually densifies the graph. Specifically, in a given layer ℓ, node i aggregates mes-
sages from its entire ℓ-hop receptive field instead of just the immediate neighbors. This results in an
improved communication over long distances while also retaining the inductive bias of the shortest
distance between nodes.

Spectral methods, on the other hand, use the spectral properties of the matrices encoding the graph
topology, e.g. the adjacency or the Laplacian matrix, to design rewiring algorithms. For example,
[5] proposed a differentiable graph rewiring layer based on the Lovász bound [55, Corollary 3.3].
Similarly, [6] introduced the Random Local Edge Flip (RLEF) algorithm, which draws inspiration
from the “Flip Markov Chain” [22, 56] – a sequence of such steps can convert a connected graph
into an expander graph – a sparse graph with good connectivity (in terms of Cheeger’s constant) –
with high probability [1, 15, 22, 30, 56], thereby enabling effective information propagation across
the graph.

Some other rewiring techniques don’t exactly classify as spatial or spectral methods. For instance,
Probabilistically Rewired MPNN (PR-MPNN) [67] learns to probabilistically rewire a graph, effec-
tively mitigating under-reaching as well as over-squashing. Finally, [25] proposed connecting all
nodes at most r-hops away, for some r ∈ N, and introducing positional embeddings to allow for
distance-aware aggregation of messages.

19

A.4 Towards a Unified Treatment

Several studies have shown that an inevitable trade-off exists between the problems of over-
smoothing and over-squashing, meaning that optimizing for one will compromise the other. For
instance, [63, 79] showed that negatively curved edges create bottlenecks in the graph resulting
in over-squashing of information. On the other hand, [63, Proposition 4.3] showed that positively
curved edges in a graph contribute towards the over-smoothing problem. To address this trade-
off, they proposed Batch Ollivier-Ricci Flow (BORF), which adds new edges adjacent to the neg-
atively curved ones, and simultaneously removes positively curved ones. In a similar vein, [34]
demonstrated that the minimum number of message-passing steps required to reach a given level
of over-smoothing is inversely related to the Cheeger’s constant, hG . This again implies an inverse
relationship between over-smoothing and over-squashing. To effectively alleviate the two issues
together, they proposed the Stochastic Jost and Liu Curvature Rewiring (SJLR) algorithm, which
adds edges that result in high improvement in the curvature of existing edges, while simultaneously
removing those that have low curvature.

Despite the well-established trade-off between over-smoothing and over-squashing, some works
have successfully tackled them together despite only adding or removing edges. One such work
is [44], which proposed a rewiring algorithm that adds edges to the graph but does not remove
any. The First-order Spectral Rewiring (FoSR) algorithm computes, as the name suggests, a
first-order approximation to the spectral gap of the symmetric Laplacian matrix (Lsym = IN −
(D†)1/2A(D†)1/2), and adds edges with the aim of maximizing it. Since the spectral gap directly
relates to Cheeger’s constant – a measure of bottleneck-edness in the graph – through Cheeger’s
inequality [2, 3, 76], this directly decreases the over-squashing levels. Moreover, [44, Figure 5]
empirically demonstrated that addition of (up to a small number of) edges selected by FoSR can
lower the Dirichlet energy of the representations, suggesting the method’s potential to simultane-
ously tackle over-smoothing. Taking a somewhat opposite approach, [54] adapted DropEdge to
remove negatively curved edges sampled from a distribution proportional to edge curvatures. Their
method, called CurvDrop, directly reduces over-squashing and, as a side benefit of operating on a
sparser subgraph, also mitigates over-smoothing.

B Proofs

B.1 Expected Propagation Matrix under DropEdge-variants

Lemma. When using DropEdge, the expected propagation matrix is given as:

EDE

[
Â

(1)
ii

]
=

1− qdi+1

(1− q) (di + 1)

EDE

[
Â

(1)
ij

]
=

1

di

(
1− 1− qdi+1

(1− q) (di + 1)

)

where (j → i) ∈ E; Ṗij = 0 otherwise.

Proof. Recall that under DropEdge, a self-loop is added to the graph after the edges are dropped,
and then the normalization is performed. In other words, the self-loop is never dropped. Therefore,
given the i.i.d. masks, m1, . . . ,mdi

∼ Bern (1− q), on incoming edges to node i, the total number
of messages is given by

1 +

di∑
k=1

mk = 1 +Mi (B.1)

20

where Mi ∼ Binom (di, 1− q). Under asymmetric normalization (see Section 2.1), the expected
weight of the message along the self-loop is computed as follows:

EDE

[
Â

(1)
ii

]
= Em1,...,mdi

[
1

1 +
∑di

k=1 mk

]
(B.2)

= EMi

[
1

1 +Mi

]
(B.3)

=

di∑
k=0

(
di
k

)
(1− q)

k
(q)

di−k

(
1

1 + k

)
(B.4)

=
1

(1− q) (di + 1)

di∑
k=0

(
di + 1

k + 1

)
(1− q)

k+1
(q)

di−k (B.5)

=
1

(1− q) (di + 1)

di+1∑
k=1

(
di + 1

k

)
(1− q)

k
(q)

di+1−k (B.6)

=
1− qdi+1

(1− q) (di + 1)
(B.7)

Similarly, if the Bernoulli mask corresponding to j → i is 1, then the total number of incoming
messages to node i is given by

2 +

di−1∑
k=1

mk

including one self-loop, which is never dropped, as noted earlier. On the other hand, the weight of
the edge is simply 0 if the corresponding Bernoulli mask is 0. Using the Law of Total Expectation,
the expected weight of the edge j → i can be computed as follows:

EDE

[
Â

(1)
ij

]
= q · 0 + (1− q)Em1,...,mdi−1

[
1

2 +
∑di−1

k=1 mk

]
(B.8)

= (1− q)

di−1∑
k=0

(
di − 1

k

)
(1− q)

k
(q)

di−1−k

(
1

2 + k

)
(B.9)

=

di−1∑
k=0

(di − 1)!

(k + 2)! (di − 1− k)!
(1− q)

k+1
(q)

di−1−k
(k + 1) (B.10)

=

di+1∑
k=2

(di − 1)!

(k)! (di + 1− k)!
(1− q)

k−1
(q)

di+1−k
(k − 1) (B.11)

=
1

di (di + 1) (1− q)

di+1∑
k=2

(
di + 1

k

)
(1− q)

k
(q)

di+1−k
(k − 1) (B.12)

=
1

di (di + 1) (1− q)

[
(di + 1) (1− q)− 1 + qdi+1

]
(B.13)

=
1

di

(
1− EDE

[
Â

(1)
ii

])
(B.14)

Analysis of DropEdge-variants. We will similarly derive the expected propagation matrix for other
random edge-dropping algorithms. First off, DropNode [23] samples nodes and drops corresponding
columns from the aggregation matrix directly, followed by rescaling of its entries:

EDN

[
1

1− q
Â

]
=

1

1− q
× (1− q) Â = Â (B.15)

21

That is, the expected propagation matrix is the same as in a NoDrop model (q = 0).

Nodes sampled by DropAgg [43] don’t aggregate messages. Therefore, if Â = Âasym, then the
expected propagation matrix is given by

EDA

[
Âii

]
= q +

1− q

di + 1
=

1 + diq

di + 1
> EDE

[
Âii

]
EDA

[
Âij

]
=

1

di

(
1− EDA

[
Âii

])
< EDE

[
Âij

] (B.16)

Finally, DropGNN [65] samples nodes which neither propagate nor aggregate messages. From any
node’s perspective, if it is not sampled, then its aggregation weights are computed as for DropEdge:

EDG

[
Âii

]
= q + (1− q)EDE

[
Âii

]
= q +

1− qdi+1

di + 1
> EDA

[
Âii

]
EDG

[
Âij

]
=

1

di

(
1− EDG

[
Âii

])
< EDA

[
Âij

] (B.17)

B.2 Sensitivity in L-layer Linear GCNs

Theorem. In an L-layer linear GCN with Â = Âasym, using DropEdge, DropAgg or DropGNN
decreases the sensitivity of a node i ∈ V to another node j ∈ S(L) (i), thereby reducing its effective
receptive field.

E...

[(
ÂL
)
ij

]
=

∑
(u0,...,uL)∈Paths(j→i)

L∏
ℓ=1

E...

[
Âuℓuℓ−1

]
< END

[(
ÂL
)
ij

]
(B.18)

where ND refers to a NoDrop model (q = 0), the placeholder · · · can be replaced with one of the
edge-dropping methods DE, DA or DG, and the corresponding entries of E...[Â] can be plugged
in from Equation 3.3, Equation B.16 and Equation B.17, respectively. Moreover, the sensitivity
monotonically decreases as the dropping probability is increased.

Proof. Recall that Ṗ can be viewed as the transition matrix of a non-uniform random walk, such
that Ṗuv = P (u → v). Intuitively, since there is no self-loop on any given L-length path connecting
nodes i and j (which are assumed to be L-hops away), the probability of each transition on any path
connecting these nodes is reduced. Therefore, so is the total probability of transitioning from i to j
in exactly L hops.

More formally, denote the set of paths connecting the two nodes by

Paths (j → i) = {(u0, . . . , uL) : u0 = j;uL = i; (uℓ−1 → uℓ) ∈ E ,∀ℓ ∈ [L]} (B.19)

The (i, j)-entry in the propagation matrix is given by(
ṖL
)
ij
=

∑
(u0,...,uL)∈Paths(j→i)

L∏
ℓ=1

Ṗuℓuℓ−1
(B.20)

Since there is no self-loop on any of these paths,(
ṖL
)
ij
=

∑
(u0,...,uL)∈Paths(j→i)

L∏
ℓ=1

1

duℓ

(
1− 1− qduℓ

+1

(1− q) (duℓ
+ 1)

)
(B.21)

<
∑

(u0,...,uL)∈Paths(j→i)

L∏
ℓ=1

(
1

duℓ
+ 1

)
(B.22)

The right hand side of the inequality is the (i, j)-entry in the Lth power of the propagation matrix of
a NoDrop model. From Equation B.16 and Equation B.17, we know that Equation B.22 is true for

22

DropAgg and DropGNN as well. We conclude the first part of the proof using Equation 3.2 – the
sensitivity of node i to node j is proportional to (ṖL)ij .

Next, we recall the geometric series for any q:

1 + q + . . .+ qd =
1− qd+1

1− q
(B.23)

Each of the terms on the right are increasing in q, hence, all the Ṗuℓuℓ−1
factors are decreasing in

q. Similarly, EDA[Âij] and EDG[Âij] decrease with increasing q. Using these results with Equa-
tion B.20, we conclude the second part of the theorem.

C Theoretical Extensions

C.1 Sensitivity in Nonlinear MPNNs

While linear networks are useful in simplifying the theoretical analysis, they are often not practical.
In this subsection, we will consider the upper bounds on sensitivity established in previous works,
and extend them to the DropEdge setting.

ReLU GCNs. [84] considered the case of ReLU nonlinearity, so that the update rule is Z(ℓ) =

ReLU(ÂZ(ℓ−1)W (ℓ)). Additionally, it makes the simplifying assumption that each path in the
computational graph is active with a fixed probability, ρ [45, Assumption A1p-m]. Accordingly, the
sensitivity (in expectation) between any two nodes is given as∥∥∥∥∥EReLU

[
∂z

(L)
i

∂xj

]∥∥∥∥∥
1

=

[
ρ

∥∥∥∥∥
L∏

ℓ=1

W (ℓ)

∥∥∥∥∥
1

](
ÂL
)
ij
= ζ

(L)
1

(
ÂL
)
ij

(C.1)

where ζ(L)
1 depends only on the depth L, and is independent of the choice of nodes i, j ∈ V . Taking

an expectation w.r.t. the random edge masks, we get

EM(1),...,M(L)

[∥∥∥∥∥EReLU

[
∂z

(L)
i

∂xj

]∥∥∥∥∥
1

]
= ζ

(L)
1

(
E

[
L∏

ℓ=1

Â(ℓ)

])
ij

= ζ
(L)
1

(
E
[
Â
]L)

ij

(C.2)

Using Theorem 3.1, we conclude that in a ReLU-GCN, DropEdge, DropAgg and DropGNN will
reduce the expected sensitivity between nodes L-hops away. Empirical observations in Figures 1a
and 4 suggest that we may expect an increase in sensitivity to neighboring nodes, but a significant
decrease in sensitivity to those farther away.

Source-only Message Functions. [8, Lemma 3.2] considers MPNNs with aggregation functions of
the form

Agg(ℓ)
(
z
(ℓ−1)
i ,

{
z
(ℓ−1)
j : j ∈ S(1) (i)

})
=

∑
j∈B(1)(i)

ÂijMsg(ℓ)
(
z
(ℓ−1)
j

)
(C.3)

and Upd and Msg functions with bounded gradients. In this case, the sensitivity between two nodes
i, j ∈ V can be bounded as ∥∥∥∥∥∂z(L)

i

∂xj

∥∥∥∥∥
1

≤ ζ
(L)
2

(
L∑

ℓ=0

Âℓ

)
ij

(C.4)

As before, we can use the independence of edge masks to get an upper bound on the expected
sensitivity:

EM(1),...,M(L)

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
≤ ζ

(L)
2

(
E

[
IN +

L∑
ℓ=1

ℓ∏
k=1

Â(k)

])
ij

= ζ
(L)
2

(
L∑

ℓ=0

E
[
Â
]ℓ)

ij

(C.5)

23

Figure 5 shows the plot of the entries of
∑6

ℓ=0 Ṗ
ℓ (i.e. for DropEdge), as in the upper bound above,

with Â = Âasym. We observe that the sensitivity between nearby nodes marginally increases, while
that between distant nodes notably decreases (similar to Figure 1a), suggesting significant over-
squashing. Similar observations can be made with Â = Âsym, and for other DropEdge-variants.

Source-and-Target Message Functions. [79, Lemma 1] showed that if the aggregation function is
instead given by

Agg(ℓ)
(
z
(ℓ−1)
i ,

{
z
(ℓ−1)
j : j ∈ S(1) (i)

})
=

∑
j∈B(1)(i)

ÂijMsg(ℓ)
(
z
(ℓ−1)
i , z

(ℓ−1)
j

)
(C.6)

then the sensitivity between nodes i ∈ V and j ∈ S(L) (i) can be bounded as∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

≤ ζ
(L)
3

(
ÂL
)
ij

(C.7)

With random edge-dropping, this bound can be adapted as follows:

EM(1),...,M(L)

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
≤ ζ

(L)
3

(
E
[
Â
]L)

ij

(C.8)

which is similar to Equation C.2, only with a different proportionality constant, that is anyway
independent of the choice of nodes. Here, again, we invoke Theorem 3.1 to conclude that (E[Â]L)ij
decreases monotonically with increasing DropEdge probability q. This implies that, in a non-linear
MPNN with Â = Âasym, DropEdge lowers the sensitivity bound given above. Empirical results in
Figure 4 support the same conclusion for Â = Âsym.

C.2 Test-time Monte-Carlo Dropout

Up until now, we have focused on the expected sensitivity of the stochastic representations in models
using DropEdge-variants. This corresponds to their training-time behavior, wherein the activations
are random. At test-time, the standard practice is to turn these methods off by setting q = 0.
However, this raises the over-smoothing levels back up [86]. Another way of making predictions
is to perform multiple stochastic forward passes, as during training, and then averaging the model
outputs. This is similar to Monte-Carlo Dropout, which is an efficient way of ensemble averaging
in MLPs [27], CNNs [26] and RNNs [28]. In addition to alleviating over-smoothing, this approach
also outperforms the standard implementation in practical settings [86]. We can study the effect of
random edge-dropping in this setting by examining the sensitivity of the expected representations:∥∥∥∥ ∂

∂xj
E
[
z
(L)
i

]∥∥∥∥
1

=

∥∥∥∥∥E
[
∂z

(L)
i

∂xj

]∥∥∥∥∥
1

(C.9)

In linear models, the order of the two operations – expectation and 1-norm – is irrelevant:∥∥∥∥∥E
[
∂z

(L)
i

∂xj

]∥∥∥∥∥
1

=

∥∥∥∥E [(ÂL
)
ij

]
W

∥∥∥∥
1

= E
[(

ÂL
)
ij
∥W ∥1

]
= E

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
(C.10)

In general, the two quantities can be related using the convexity of norms and Jensen’s inequality:∥∥∥∥ ∂

∂xj
E
[
z
(L)
i

]∥∥∥∥
1

≤ E

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
≤ . . . (C.11)

Therefore, the upper bound results in Appendix C.1 trivially extend to the MC-averaged representa-
tions. Although tighter bounds may be derived for this setting, we leave that for future works.

D Empirical Sensitivity Analysis

In this section, we present some supplemental figures demonstrating the negative effects of random
edge-dropping, particularly focusing on scenarios not covered by the theory. We also elaborate on
the setup used for the empirical sensitivity analysis in Section 3.

24

Figure 4: Entries of P̈ 6, averaged after binning node-pairs by their shortest distance.

Figure 5: Entries of
∑6

ℓ=0 Ṗ
ℓ, averaged after binning node-pairs by their shortest distance.

D.1 Symmetrically Normalized Propagation Matrix

The results in Section 3 correspond to the use of Â = Âasym for aggregating messages – in each
message passing step, only the in-degree of node i is used to compute the aggregation weights of the
incoming messages. In practice, however, it is more common to use the symmetrically normalized
propagation matrix, Â = Âsym, which ensures that nodes with high out-degree do not dominate the
information flow in the graph [47]. As in Equation 3.2, we are looking for

P̈L := EM(1),...,M(L)

[
L∏

ℓ=1

Â(ℓ)

]
(D.1)

where P̈ := EDE[Â
sym]. While P̈ is analytically intractable, we can approximate it using Monte-

Carlo sampling. Accordingly, we use the Cora dataset, and sample 20 DropEdge masks to compute
an approximation of P̈ , and plot out the entries of P̈L, as we did for ṖL in Figure 1a. The results
are presented in Figure 4, which shows that while the sensitivity between nodes up to 3 hops away
is increased, that between nodes farther off is significantly reduced, same as in Figure 1a.

D.2 Upper Bound on Expected Sensitivity

[8] showed that the sensitivity between any two nodes in a graph can be bounded using the sum of
the powers of the propagation matrix. In Appendix C.1, we extended this bound to random edge-
dropping methods with independent edge masks sampled in each layer:

EM(1),...,M(L)

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
≤ ζ

(L)
3

(
L∑

ℓ=0

E
[
Â
]ℓ)

ij

Although this bound does not have a closed form, we can again use the Cora network to study its
entries. We plot the entries of

∑6
ℓ=0 Ṗ

ℓ, corresponding to DropEdge, against the shortest distance
between node-pairs. The results are presented in Figure 5. We observe an exponential decrease
in the sensitivity bound as the distance between nodes increases, suggesting that DropEdge is not
suitable for capturing LRIs.

25

Table 4: Statistics of node-classification datasets. Homophily measures from [52].

Dataset Nodes Edges Features Classes Homophily
Homophilic Networks

Cora 2,708 10,556 1,433 7 0.766
CiteSeer 3,327 9,104 3,703 6 0.627
PubMed 19,717 88,648 500 3 0.664

Heterophilic Networks
Chameleon 2,277 36,051 2,325 5 0.062

Squirrel 5,201 216,933 2,089 5 0.025
Actor 7,600 29,926 931 5 0.011

TwitchDE 9,498 306,276 128 2 0.142

D.3 MC-Approximation of Sensitivity in Nonlinear MPNNs

Given a target node from the Cora dataset [57], we computed the sensitivity of its representation to
source nodes up to L = 6 hops away in ReLU-GCNs of width 32. The raw sensitivities were normal-
ized to obtain influence scores [84]. This was repeated for 25 target nodes, and 25 model−dropout
samples were used for each of them. The source nodes were binned by the shortest distance from
the corresponding target node, and the influence scores were averaged over each bin to obtain an
average influence from nodes ℓ-hops away.

Why influence scores?

E Experiments Details

In this section, we expand on the details of the experiments in Section 5. All experiments were run
on a server equipped with an Intel(R) Xeon(R) E5-2620 v3 CPU, 62 GB of RAM, 4 × NVIDIA
GeForce GTX TITAN X GPU (12 GB VRAM each), and CUDA version 12.4.

E.1 Descriptions of the Datasets

Synthetic Datasets. The SyntheticZINC dataset [33], as the name suggests, is a synthetic dataset
derived from the ZINC chemical dataset [42], with the dataset size constrained to 12K molecular
graphs [20]. Specifically, given a molecular graph G, we set all its nodes’ features to 0, except for
two nodes, i and j ̸= i, whose features are sampled as xi, xj ∈ U (0, 1). The graph-level target
is computed as y = tanh (xi + xj), i.e. learning the task requires a non-linear mixing between the
features of nodes i and j. These nodes are chosen to induce the desired level of underlying mixing –
given α ∈ [0, 1], the node-pair (i, j) is chosen such that the commute time [10] between them is the
αth quantile of the distribution of commute times over G. We analyze the effect of underlying mixing
on model performance by varying α as 0.1, 0.2, . . . , 1.0. The MPNN is chosen to be an L-layer GCN
with a MAX-pooling readout, which encourages the model to learn the mixing by effectively passing
messages [33, Theorem 3.2]. The model depth is set at L = maxG ⌈diam (G) /2⌉ = 11 to ensure
that the GCN does not suffer from under-reaching [4, 7].

Node-classification Tasks. Cora [57], CiteSeer [31] and PubMed [62] are citation networks – their
nodes represent scientific publications and an edge between two nodes indicates that one of them
has cited the other. The features of each publication are represented by a binary vector, where each
index indicates whether a specific word from a dictionary is present or absent. Several studies have
showed that these datasets have high homophily in node labels [52, 98] and that they are modelled
much better by shallower networks than by deeper ones [95]. Chameleon and Squirrel [69] are
networks of English Wikipedia web pages on the respective topics, and the edges between web
pages indicate links between them. The task is to predict the average-monthly traffic on each of the
web pages. The Actor dataset is induced from a larger film-director-actor-writer network [66]. It
is a network of film actors, with edges between those that occur on the same Wikipedia page, and
node features are binary vectors denoting the presence of specific keywords in the corresponding

26

Table 5: Statistics of graph-classification datasets.

Dataset Graphs Nodes Edge Features Classes
Mutag 188 17.9 39.6 7 2

Proteins 1,113 39.1 145.6 3 2
Enzymes 600 32.6 124.3 3 6
Collab 5,000 74.5 4914.4 0 3
IMDb 1,000 19.8 193.1 0 2
Reddit 2,000 429.6 995.5 0 2

Wikipedia entries. The task is to classify actors into five categories based on the content of their
Wikipedia pages. Finally, TwitchDE [69] is a network of Twitch users in Germany, with the edges
between them representing their mutual follower relationships. The node features are embeddings
of the games played by the users, and the task is to predict whether the users use explicit language.

Graph-classification Tasks. Following [8, 44], we use the graph-classification datasets introduced
in [61], which were hypothesized to be long-range tasks. On one hand we have the molecular
datasets Mutag, Proteins and Enzymes, and on another we have the social networks Reddit-Binary,
IMDb-Binary and Collab. Their statistics are presented in Table 5.

Mutag [17] consists of nitroaromatic compounds, with the objective of predicting their mutagenicity,
i.e. the ability to cause genetic mutations, in cells in Salmonella typhimurium. Each compound is
represented as a graph, where nodes correspond to atoms, represented by their type using one-hot
encoding, and edges denote the bonds between them. Proteins [9, 19] is a collection of proteins
classified as enzymes or not. The molecules are represented as a graph of amino acids, with edges
between those separated up to 6Å apart. The Enzymes [9, 73] dataset is represented similarly, and
the task is to classify the proteins into one of 6 Enzyme Commission (EC) numbers – a system to
classify enzymes based on the reactions they catalyze.

Collab [87] is a scientific collaboration dataset where each graph represents a researcher’s ego net-
work. Nodes correspond to researchers and their collaborators, with edges indicating co-authorship.
Each network is labeled based on the researcher’s field, which can be High Energy Physics, Con-
densed Matter Physics, or Astrophysics. IMDb-Binary [87] is a movie collaboration dataset con-
taining the ego-networks of 1,000 actors and actresses from IMDB. In each graph, nodes represent
actors, with edges connecting those who have co-starred in the same film. Each graph is derived
from either the Action genre or Romance. Finally, Reddit-Binary [87] comprises graphs represent-
ing online discussions on Reddit, where nodes correspond to users and edges indicate interactions
through comment responses. Each graph is labeled based on whether it originates from a Q&A or
discussion-based subreddit.

For the molecular datasets, we use the node features supplied by PyG [24], but since they are un-
available for the social networks, we set scalar features xi = (1) for all nodes in these datasets,
following [44].

E.2 Training Configurations

Dataset Splits. For the SyntheticZINC task, we use the train-val-test splits provided in PyG. For
the homophilic (citation) networks, we use the ‘full’ split [12], as provided in PyG, and for the
heterophilic networks, we randomly sample 60% of the nodes for training, 16% for validation, and
24% for testing. On the other hand, for the graph classification tasks, we sample 80% of the graphs
for training, and 10% each for validation and testing, following [8, 44].

Model Architecture. We standardize most of the hyperparameters across all experiments to isolate
the effect of random dropping. Specifically, we use symmetric normalization of the adjacency ma-
trix to compute the edge weights for GCN, and we set the number of attentions heads for GAT to 2
in order to keep the computational load manageable, while at the same time harnessing the expres-
siveness of the multi-headed self-attention mechanism. For the SyntheticZINC dataset, we fix the
size of the hidden representations at 16, while we fix them to 64 for all the real-world datasets. In all
settings, a linear transformation is applied to the node features before message-passing. Afterwards,

27

a bias term is added and then the ReLU nonlinearity is applied. Finally, a linear readout layer is used
to compute the regressand (for regression tasks) or logits (for classification).

Dropping Probability. For the synthetic datasets, we experiment with a NoDrop baseline, and
DropEdge, Dropout and DropMessage, each with q = 0.2 and q = 0.5. For the real-world datasets,
the dropping probabilities are varied as q = 0.1, 0.2, . . . , 0.9, so as to reliably find the best perform-
ing configuration. We adopt the common practice of turning the dropping methods off at test-time
(q = 0), isolating the effects on optimization and generalization, which our theory does not address.

DropSens Configurations. For DropSens, we use 4 possible values for proportion of infor-
mation preserved over corss-edges, c = 0.5, 0.8, 0.9, 0.95. Since the dropping probability, qi,
increases with the in-degree of the target node, di, the proportion of all edges dropped could
become very high, especially with large c. Therefore, we clip the value of qi by 4 possible
choices, qi ≤ qmax ∈ {0.2, 0.3, 0.5, 0.8}. We exclude the following configurations: (c, qmax) ∈
{(0.5, 0.2) , (0.5, 0.3) , (0.5, 0.5) , (0.8, 0.2) , (0.8, 0.3)}, since they use the same dropping proba-
bility (= qmax) for each edge, and are therefore equivalent to DropEdge. In summary, we test with
a total of 11 configurations for DropSens to find the best one for each task.

Optimization Algorithm. The models are trained using the Adam optimizer [46]. On the Syn-
theticZINC dataset, the models are trained with a learning rate of 2 × 10−3 and a weight decay of
1× 10−4, for a total of 200 epochs. On the real-world datasets, we use a learning rate of 1× 10−3

and no weight decay, following [8, 44]. Here, we cap the maximum number of epochs at 300. In
both cases, the learning rate is reduced by a factor of 1× 10−1 if the validation loss fails to improve
beyond a relative threshold of 1× 10−4 for 10 epochs, again following [8, 44].

Number of Independent Runs. We perform only 10 independent runs on the SyntheticZINC
dataset due to its consistently low variance in performance, as also observed by [33]. For real-world
datasets, we conduct 20 runs to identify the best-performing dropping configurations. We then per-
form a one-sided t-test to assess whether dropout improves performance, using a 90% confidence-
level (α = 0.1) and targeting a statistical power of 0.9 (β = 0.1). Under the assumption that the
dropping method offers superior performance, detecting a medium effect size of 0.5 [14] requires
approximately 53 samples per group according to standard power analysis. We round this to 50, and
accordingly perform 30 additional runs for the final comparison of the best-performing dropping
configuration with the NoDrop baseline.

E.3 DropSens Implementation

import warnings
import sympy
from sympy.abc import x as q
import torch
from torch_geometric.utils import degree , contains_self_loops

def drop_sens(
edge_index: torch.Tensor ,
c: float ,
max_drop_prob: float = None

):

if max_drop_prob is None:
max_drop_prob = 1.

Assuming edge index does not have self loops
if contains_self_loops(edge_index):

warnings.warn("Degree computation in DropSens assumes absence",
"of self -loops , but the edge_index passed has them.")

degrees = degree(edge_index [1]).int() # Node index -> in -degree

ds = torch.unique(degrees).tolist () # Sorted array
mapper = torch.nan * torch.ones(ds[-1]+1)
mapper[ds] = max_drop_prob # Node degree -> dropping prob

for d_i in ds:
q_i = float(sympy.N(sympy.real_roots(

(1-c)*d_i*(1-q) - q + q**(d_i+1))[-2] # Following Equation 4.1
)) if d_i > 0 else 0.
if q_i > max_drop_prob:

Because q monontonic wrt d, and ds is sorted
break

28

Figure 6: Edge-wise dropping probabilities under DropSens for varying values of c, along with corresponding
approximations as in Equation E.1.

mapper[d_i] = q_i

in_degrees = degrees[edge_index [1]] # Edge index -> in -degree of target node
qs = mapper[in_degrees] # Edge index -> dropping probability
edge_mask = qs <= torch.rand(edge_index.size (1))
edge_index = edge_index [:, edge_mask]

return edge_index , edge_mask

Listing 1: DropSens Implementation

In Listing 1, we present the DropSens implementation used in our experiments, relying mainly on
SymPy [59].

Unfortunately, computing the roots of Equation 4.1 becomes slow when the in-degree di is large –
a common scenario in large networks. This issue is especially pronounced when the proportion of
information preserved c is large, as the dropping threshold is only met at a higher value of di. To
address this computational challenge, we propose an approximation:

1− c =
qi − qdi+1

i

di (1− qi)
≈ qi

di (1− qi)
=⇒ qi ≈

(1− c) di
1 + (1− c) di

(E.1)

This approximation becomes increasingly accurate as c increases – since more information needs to
be preserved, qi needs to be small, and hence, qdi+1

i → 0.

Figure 6 shows the DropSens probabilities for masking incoming messages based on the in-degree
of the target nodes, along with the corresponding approximations. It is clear to see that the approxi-
mation gets increasingly more accurate for lower proportions of information loss.

F Supplementary Experiments

F.1 Test Accuracy versus DropEdge Probability

In Section 3, we studied the effect of edge-dropping probability on sensitivity between nodes at
different distances. However, this analysis may be insufficient to precisely predict the impact on
model performance since DropEdge-variants significantly affect the optimization trajectory as well.
To learn more about the relationship between test-time performance and dropping probability, we
evaluate DropEdge-GCNs on the heterophilic datasets; the results are shown in Figure 7. Clearly, on
Chameleon, Squirrel and TwitchDE, the performance degrades with increasing dropping probability,
as was suggested by Theorem 3.1 and Figure 1a. Surprisingly, the trends are significantly monotonic
with GCNs of all depths, L = 2, 4, 6, 8.

29

Figure 7: Dropping probability versus test accuracy of DropEdge-GCN. The theory the explains the contrasting
trends as follows: random edge-dropping pushes models to fit to local information during training, which is
suitable for short-range tasks, but harms test-time performance in long-range ones.

Figure 8: Dropping probability versus test accuracy of DropNode-GCN.

F.2 Remark on DropNode

In Equation B.15, we noted that DropNode does not suffer from loss in sensitivity. However, those
results were in expectation. Moreover, our analysis did not account for the effects on the learning
trajectory. In practice, a high DropNode probability would make it hard for information in the node
features to reach distant nodes. This would prevent the model from learning to effectively combine
information from large neighborhoods, harming generalization. In Figure 8, we visualize the rela-
tionship between test-time performance and DropNode probability. The performance monotonically
decreases with increasing dropping probability, as was observed with DropEdge.

F.3 Over-squashing or Under-fitting?

The results in the previous subsection suggest that using random edge-dropping to regularize model
training leads to poor test-time performance. We hypothesize that this occurs because the mod-
els struggle to propagate information over long distances, causing node representations to overfit
to local neighborhoods. However, a confounding effect is at play: DropEdge variants reduce the
generalization gap by preventing overfitting to the training set, i.e. poorer training performance. If
this regularization is too strong, it could lead to underfitting, which could also explain the poor
test-time performance on heterophilic datasets. This concern is particularly relevant because the
heterophilic networks are much larger than homophilic ones (see Table 4), making them more prone
to underfitting. To investigate this, we plot the training accuracies of deep DropEdge-GCNs on
the heterophilic datasets; Figure 9 shows the results. It is clear that the models do not underfit as
the dropping probability increases. In fact, somewhat unexpectedly, the training metrics improve.
Together with the results in Figure 7, we conclude that DropEdge-like methods are detrimental in
long-range tasks since they cause overfitting to short-range artifacts in the training data, resulting in
poor generalization at test-time.

30

Figure 9: DropEdge probability versus training accuracy of GCNs. The training performance improves with
q, suggesting that the models are not underfitting. Instead, the reason for poor test-time performance (Figure 7)
is that models are over-fitting to short-range signals during training, resulting in poor generalization.

Table 6: Difference in mean test accuracy (%) between the best performing configuration of each dropout
method and the baseline NoDrop model, with GAT as the base model. Cell colors represent p-values from a
t-test evaluating whether dropout improves performance.

(a) Node classification tasks.

Dropout Homophilic Networks Heterophilic Networks
Cora CiteSeer PubMed Chameleon Squirrel TwitchDE

DropEdge +0.483 +0.828 −0.064 −1.988 −1.125 −0.206

DropNode +0.200 −0.002 −0.181 −6.090 −2.016 −2.383

DropAgg +0.322 +0.797 +0.032 −7.779 −4.904 −1.014

DropGNN +0.519 +1.058 −0.149 −10.572 −5.214 −1.636

Dropout +0.600 +0.104 +0.265 −7.891 −2.773 −1.598

DropMessage +0.389 +0.039 +0.633 −1.569 −0.092 −0.139

(b) Graph classification tasks.

Dropout Molecular Networks Social Networks
Mutag Proteins Enzymes Reddit IMDb Collab

DropEdge +0.900 −0.375 +0.290 +0.550 −0.120 0.000

DropNode +0.400 −0.196 −5.085 +1.860 +3.760 0.000

DropAgg +1.200 +0.196 +0.519 +0.400 +0.860 0.000

DropGNN +1.800 +0.143 −3.658 −0.140 +1.220 0.000

Dropout +1.100 −0.679 −8.313 +1.690 +3.340 0.000

DropMessage +3.600 −0.107 −3.382 +1.300 +2.680 0.000

G Supplementary Experimental Results

G.1 Performance of GAT with Dropping Methods

In Table 6, we present the results of experiments in Section 5.2, but with the GAT architecture. For
node classification tasks, we see the same dichotomy as in Table 1a, with dropping methods signifi-
cantly improving performance on homophilic networks, while being detrimental to performance on
heterophilic networks. On graph classification tasks, the dropping methods improve performance,
but the improvement (if any) is not statistically significant (in 28/36 ≈ 78% cases). Note that the
GAT architecture was unable to learn the Collab dataset, i.e. the performance in all cases was as
good as a random classifier’s.

G.2 Effect Size in Statistical Tests

The reliance on p-values as a measure of statistical significance has been widely criticized due to
its limitations in conveying the magnitude of an effect. Although a low p-value indicates that an
observed difference is unlikely to have occurred under the null hypothesis, it does not provide in-
formation about the practical significance of the result. A statistically significant effect may be too

31

Table 7: Hedges’ g statistic for different dataset−model−dropout combinations. Color-coding for effect size
according to [14]; red denotes negative effect, and green denotes positive effect. Medium to large positive effect
sizes in bold.

No effect Small effect Medium effect Large effect

Dataset GNN DropEdge DropNode DropAgg DropGNN Dropout DropMessage

Cora
GCN +0.973 +0.759 +0.431 +0.900 +0.990 +0.060

GIN −0.174 +0.205 +0.068 −0.212 +1.010 +2.180

GAT +0.933 +0.317 +0.455 +1.083 +0.977 +0.710

CiteSeer
GCN +0.848 +0.268 +0.628 +0.929 +0.155 −0.397

GIN −0.254 +0.515 −0.124 −0.854 +0.006 +0.132

GAT +0.799 −0.002 +0.777 +0.985 +0.103 +0.040

PubMed
GCN +1.039 +1.285 −0.627 +1.455 +2.625 +2.907

GIN −0.043 +0.343 −0.546 −1.213 +0.423 +1.118

GAT −0.108 −0.320 +0.053 −0.271 +0.407 +0.964

Chameleon
GCN −0.167 −0.174 −3.279 −0.479 −0.385 +0.356

GIN −0.219 −0.567 −0.329 −0.510 −0.857 +0.290

GAT −0.429 −1.326 −1.945 −2.438 −1.504 −0.333

Squirrel
GCN +0.006 −0.389 −8.183 −0.180 −0.066 +0.189

GIN +0.179 −0.204 +0.199 −0.052 −0.111 +0.085

GAT −0.393 −0.750 −1.899 −2.251 −1.165 −0.038

TwitchDE
GCN −0.099 −0.113 −2.272 −0.426 −0.280 +0.165

GIN −0.079 −0.116 +0.140 −0.005 −0.389 −0.016

GAT −0.201 −1.206 −0.726 −0.938 −0.921 −0.129

Mutag
GCN −0.087 −0.448 −0.069 −0.017 −0.026 +0.174

GIN −0.107 −0.351 −0.330 −0.640 −0.240 −0.342

GAT +0.071 +0.034 +0.099 +0.151 +0.091 +0.281

Proteins
GCN +0.339 +0.450 +0.260 +0.307 +0.397 +0.477

GIN −0.331 −0.541 −0.352 −0.491 −0.657 −0.217

GAT −0.076 −0.042 +0.040 +0.031 −0.136 −0.021

Enzymes
GCN −0.072 −0.272 −0.055 −0.359 −0.758 −0.543

GIN −0.673 −0.070 −0.083 −0.548 −0.290 −0.048

GAT +0.031 −0.508 +0.055 −0.380 −0.960 −0.353

Reddit
GCN −1.712 −1.333 −3.075 −2.360 −1.065 −1.527

GIN −0.531 +0.095 +0.163 +0.240 +0.503 +0.165

GAT +0.209 +0.638 +0.154 −0.054 +0.632 +0.469

IMDb
GCN +0.246 +0.513 +0.642 +0.281 +0.200 +0.240

GIN −0.364 −0.024 −0.327 −0.932 −0.204 −0.090

GAT −0.030 +0.917 +0.245 +0.344 +0.885 +0.650

Collab
GCN −0.195 −0.859 −6.962 +0.140 −0.348 −0.065

GIN −0.220 +0.396 −0.916 −1.139 −0.071 +0.396

GAT +0.000 +0.000 +0.000 +0.000 +0.000 +0.000

small to be meaningful in real-world applications, while a non-significant result does not neces-
sarily imply the absence of a meaningful effect, particularly when sample sizes are small. These
concerns have led to an increased emphasis on effect size measures, which quantify the magnitude
of differences independently of sample size.

One widely used measure of effect size is Cohen’s d statistic [14], which standardizes the difference
between two group means by dividing by the pooled standard deviation:

d =
x̄1 − x̄2

sp
(G.1)

sp =

√
(n1 − 1) s21 + (n2 − 1) s22

n1 + n2 − 2
(G.2)

where x̄1 and x̄2 are sample means, s21 and s22 are unbiased sample variance, and n1 and n2 are the
sizes of the samples. However, Cohen’s d assumes that the sample standard deviation is an unbiased
estimator of the population standard deviation. In small samples, this assumption does not hold, as
the sample standard deviation tends to underestimate the true population variability. To address this

32

Table 8: Performance of GIN with different rewiring methods in graph-classification tasks, following [8, 44].
First, second, and third best results are colored.

Rewiring Mutag Proteins Enzymes Reddit IMDb Collab
None 77.70 70.80 33.80 86.79 70.18 72.99

Last FA 83.45 72.30 47.40 90.22 70.91 75.06
Every FA 72.55 70.38 28.38 50.36 49.16 32.89

DIGL 79.70 70.76 35.72 76.04 64.39 54.50

SDRF 78.40 69.81 35.82 86.44 69.72 72.96

FoSR 78.00 75.11 29.20 87.35 71.21 73.28
GTR 77.60 73.13 30.57 86.98 71.28 72.93

DropSens 70.60 68.00 29.56 76.44 62.48 65.77

bias, Hedges’ g statistic [39] introduces a correction factor that adjusts Cohen’s d statistic for small
sample sizes:

g ≈
(
1− 3

4 (n1 + n2)− 9

)
d (G.3)

[14] suggested that an effect size of 0.2 be considered small, 0.5 be considered medium, and 0.8 be
considered large. In Table 7, we present Hedges’ g statistic for the statistical tests in Section 5.2. We
can clearly see that for homophilic datasets, there is a strong positive effect of using the dropping
methods, but for heterophilic datasets and graph classification datasets, there is at most a small
positive effect of using the dropping methods; rather, in most cases there is a negative effect.

G.3 Performance of GIN with DropSens

In Section 5.3, we showed that when modelling long-range graph-classification tasks using GCNs,
DropSens outperforms state-of-the-art graph-rewiring techniques designed for alleviating over-
squashing. However, it does not perform as well with GIN, as can be seen in Table 8 – unsur-
prising, since DropSens was specifically designed to work with GCN’s message-passing scheme.
This highlights the main limitation of DropSens, necessitating architecture-specific alteration to the
edge-dropping strategy, which is not practical in general.

G.4 Best-performing Dropping Probabilities

For the real-world datasets in Section 5.2, we report the best performing dropping probability for
different dataset−model−dropout combinations in Table 9.

33

Table 9: Best performing dropout configuration – qmax and c for DropSens, and q for other dropping methods.

GNN Dataset DropEdge DropNode DropAgg DropGNN Dropout DropMessage DropSens

Cora
GCN 0.7 0.4 0.1 0.7 0.7 0.1 0.5, 0.95
GIN 0.1 0.2 0.1 0.1 0.3 0.5 0.2, 0.90
GAT 0.8 0.3 0.9 0.4 0.7 0.6 0.8, 0.50

CiteSeer
GCN 0.9 0.1 0.9 0.8 0.1 0.3 0.2, 0.95
GIN 0.1 0.4 0.1 0.1 0.1 0.2 0.3, 0.95
GAT 0.9 0.2 0.9 0.8 0.1 0.1 0.8, 0.50

PubMed
GCN 0.3 0.4 0.1 0.2 0.5 0.7 0.5, 0.95
GIN 0.1 0.1 0.1 0.1 0.1 0.6 0.2, 0.90
GAT 0.1 0.1 0.1 0.1 0.5 0.8 0.3, 0.95

Chameleon
GCN 0.4 0.1 0.1 0.1 0.4 0.5 0.5, 0.80
GIN 0.1 0.1 0.2 0.1 0.1 0.1 0.2, 0.95
GAT 0.1 0.1 0.1 0.1 0.2 0.1 0.2, 0.95

Squirrel
GCN 0.2 0.6 0.9 0.3 0.5 0.6 0.5, 0.90
GIN 0.2 0.5 0.2 0.5 0.3 0.7 0.2, 0.95
GAT 0.1 0.1 0.1 0.1 0.1 0.1 0.2, 0.95

TwitchDE
GCN 0.3 0.2 0.9 0.1 0.1 0.6 0.3, 0.95
GIN 0.2 0.3 0.1 0.2 0.1 0.5 0.2, 0.90
GAT 0.1 0.1 0.1 0.1 0.1 0.1 0.2, 0.90

Actor
GCN 0.9 0.1 0.9 0.5 0.2 0.1 0.2, 0.95
GIN 0.5 0.1 0.2 0.3 0.6 0.2 0.2, 0.90
GAT 0.9 0.2 0.8 0.7 0.1 0.1 0.8, 0.50

Mutag
GCN 0.5 0.8 0.7 0.2 0.2 0.3 0.5, 0.80
GIN 0.1 0.3 0.1 0.6 0.2 0.5 0.5, 0.95
GAT 0.4 0.1 0.2 0.1 0.4 0.4 0.5, 0.95

Proteins
GCN 0.1 0.1 0.1 0.2 0.1 0.3 0.8, 0.90
GIN 0.1 0.3 0.1 0.1 0.4 0.1 0.5, 0.95
GAT 0.4 0.1 0.2 0.1 0.1 0.1 0.8, 0.95

Enzymes
GCN 0.5 0.1 0.1 0.6 0.1 0.4 0.8, 0.80
GIN 0.3 0.1 0.1 0.1 0.1 0.1 0.8, 0.95
GAT 0.1 0.1 0.1 0.1 0.1 0.1 0.5, 0.90

Reddit
GCN 0.1 0.1 0.1 0.1 0.2 0.1 0.2, 0.95
GIN 0.1 0.1 0.1 0.1 0.1 0.1 0.2, 0.95
GAT 0.9 0.7 0.6 0.7 0.6 0.9 0.8, 0.95

IMDb
GCN 0.6 0.7 0.1 0.6 0.1 0.9 0.8, 0.50
GIN 0.1 0.3 0.1 0.1 0.2 0.2 0.2, 0.95
GAT 0.7 0.7 0.1 0.6 0.9 0.6 0.2, 0.95

Collab
GCN 0.1 0.1 0.4 0.1 0.1 0.1 0.2, 0.95
GIN 0.1 0.2 0.1 0.1 0.2 0.1 0.2, 0.90
GAT 0.1 0.1 0.1 0.1 0.1 0.1 0.2, 0.90

34

	
	Introduction
	Background
	Graph Neural Networks
	DropEdge-variants
	Dropout-variants
	Over-squashing

	Sensitivity Analysis
	Sensitivity-Aware DropEdge
	Experiments
	Synthetic Datasets
	Real-world Datasets
	Evaluating DropSens

	Conclusion
	Appendix

	 Appendix
	Related Works
	Methods for Alleviating Over-smoothing
	Homophily Bias in Evaluation of Techniques for Deep GNN
	Methods for Alleviating Over-squashing
	Towards a Unified Treatment

	Proofs
	Expected Propagation Matrix under DropEdge-variants
	Sensitivity in L-layer Linear GCNs

	Theoretical Extensions
	Sensitivity in Nonlinear MPNNs
	Test-time Monte-Carlo Dropout

	Empirical Sensitivity Analysis
	Symmetrically Normalized Propagation Matrix
	Upper Bound on Expected Sensitivity
	MC-Approximation of Sensitivity in Nonlinear MPNNs

	Experiments Details
	Descriptions of the Datasets
	Training Configurations
	DropSens Implementation

	Supplementary Experiments
	Test Accuracy versus DropEdge Probability
	Remark on DropNode
	Over-squashing or Under-fitting?

	Supplementary Experimental Results
	Performance of GAT with Dropping Methods
	Effect Size in Statistical Tests
	Performance of GIN with DropSens
	Best-performing Dropping Probabilities

