NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

TRAINING-FREE NEURAL ACTIVE
LEARNING WITH INITIALIZATION
ROBUSTNESS GUARANTEES

SINGH JASRAJ

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES
NANYANG TECHNOLOGICAL UNIVERSITY

In partial fulfilment of the requirements for the degree of
BACHELOR OF SCIENCE (HONORS)

November 6, 2024

SUPERVISOR: PROF. Low KIAN HSIANG BRYAN
CO-SUPERVISOR: PROF. TONG PING

Acknowledgements

I wish to convey my profound appreciation to my supervisor, Professor Low
Kian Hsiang Bryan, and my collaborator, Hemachandra Apivich, for their stead-
fast backing, direction, and motivation during my research adventure. Their
knowledge, forbearance, and astute advice have been instrumental in molding
my dissertation and fostering my scholarly development.

Additionally, I sincerely thank my co-supervisor, Professor Tong Ping, for his
valuable comments, helpful critiques, and generous support. His proficiency and
contributions have been essential in improving the caliber and influence of my
investigation.

[am immensely grateful to my parents, Kaur Charanjeet and Singh Sarabjit, and
my sister, Kaur Gursimran, for their boundless affection and continual encour-
agement. Their sacrifices and efforts have been the cornerstone of my academic
journey, and I am indebted to them for all they’ve done.

Finally, I want to convey my gratitude to my friends — Agarwal Gopal, Anand
Arukshita, Gupta Chirag, Panwar Samay, Tan Hui Ru Kimberley, and Tayal Aks
— for their unwavering support, encouragement, and motivation. Their friend-
ship and companionship kept me grounded, motivated, and sane throughout my
thesis.

I reiterate my heartfelt thanks to everyone who has provided assistance and
motivation during my scholarly endeavors.

il

Abstract

Neural active learning techniques so far have focused on enhancing the predic-
tive capabilities of the networks. However, safety-critical applications necessi-
tate not only good predictive performance but also robustness to randomness
in the model-fitting process. To address this, we present the Ezpected Variance
with Gaussian Processes (EV-GP) criterion for neural active learning, which is
theoretically guaranteed to choose data points that result in neural networks
exhibiting both (a) good generalization capabilities and (b) robustness to initial-
ization. Notably, our EV-GP criterion is training-free, i.e., it does not require
network training during data selection, making it computationally efficient. We
empirically prove that our EV-GP criterion strongly correlates with initialization
robustness and generalization performance. Additionally, we demonstrate that it
consistently surpasses baseline methods in achieving both objectives, particularly
in cases with limited initially labeled data or large batch sizes for active learning.

Contents

Acknowledgement

Abstract

1 Introduction
1.1 Problem Motivation
1.2 Contributions

2 Background

2.1 Problem Setting
2.2 Neural Active Learningo
2.2.1 Diversity-Based Algorithms
2.2.2 Uncertainty-Based Algorithms
2.2.3 Hybrid Strategies
2.2.4 Gaps in Literature Lo
2.3 Gaussian Process
2.3.1 Fulll-Rank GP
232 Sparse GPo
233 ALfor GP
2.4 Neural Tangent Kernel
2.4.1 Network Parameterization
2.4.2 Training Dynamics
2.4.3 Approximating Yy using GP Posterior00
2.4.4 Applications
2.4.5 Limitations
3 Theory
3.1 Output Variance of the Trained Network
3.2 Approximation Quality
3.2.1 Dual Activations
3.2.2 Network Parameterization
3.2.3 Relationship between L and ©
3.2.4 ReLU Dual Activation Function
325 Bounding Kwithp
3.2.6 Bounding K withp

vil

iii

3.3
3.4

3.5

3.2.7 Ratiobetween and ©

4 Experiments

4.1
4.2
4.3

4.4

3.2.8 Bounding the Difference Between onyy and ontkgp - - - - - - . . L.
Connection with Generalization Error
AL Criterion
3.4.1 Bounding the Ratio Between QEV NN and QEVNTKGP -+ « + « « « « « « .
3.4.2 Incremental Computation of 03 rap « « « « « « o o e
3.4.3 Sparse GP Approximation of XxTkgp - - - - - - o oo 0oL
3.4.4 Approximating Incremental Change in xtgkap - - - - - - v« o . ..
3.4.5 Other Criterions e
AL Algorithm oo
Points Chosen by EV-GP
Correlation Between O'I%ITKGP and Output Variance
Experiments on Regression Tasks
4.3.1 Sequential Data Selection
4.3.2 Batched Data Selection
4.3.3 Evidence for Theorem 3.4
4.3.4 Sparse Approximations
4.3.5 Other Criteria
Experiments on Classification Tasks
4.4.1 Performance Comparison
4.4.2 Effect of Batch Size
4.4.3 Effect of Network Width

5 Conclusion

Appendix

A Experimental Setup

Al
A2

Regression Experiments Lo
Classification Experiments,

B Datasets

B.1
B.2
B.3
B.4

MNIST . o
EMNIST . . .
SVHN . o
CIFAR-100 o

C Active Learning Baselines

C.1
C.2
C.3
C4

Random
K-Means+-+
BADGE . . .

41
41
42
43
43
44
44
45
46
47
47
48
49

50

57

58
o8
58

59
29
59
60
61

D Reported Metrics
D.1 Output Variance
D.2 Output Entropy

E Computation of the NTK
E.1 Theoretical NTK using Neural-Tangents
E.2 Empirical NTK Using PyTorch

X

List of Figures

1.1 Effect of Random Initialization on the Converged Network 1
4.1 Points Selected by EV-GP 42
4.2 Sample Correlation between o3 pxapjanriap A0 OXn « « « o o oo 42
4.3 Regression with Sequential Data Selection 43
4.4 Regression with Batched Data Selection 44
4.5 Supporting Evidence for Theorem 3.4 45
4.6 Sequential Data Selection with Sparse Approximations of agy 45
4.7 Batched Data Selection with Sparse Approximations of agy 45
4.8 Regression using Other Criteria 46
4.9 Classification with MLP 47
4.10 Classification with CNN o 47
4.11 Effect of Varying Batch Size oo 48
4.12 Effect of Varying Network Width 49

x1

Chapter 1

Introduction

1.1 Problem Motivation

Neural network training is known to be sensitive to the initialization of the network [12, 36].
These networks are usually randomly initialized [18, 22] and then trained according to some
iterative gradient-based method. Consequently, the network function at convergence will be
dependent on initialization as will be the predictions it makes.

0.75

0.50

0.25

0.00

—0.25

—0.50

—0.75

Figure 1.1: Demonstration of the effect of random initialization on the converged network. Five
randomly initialized 5-layer neural networks with widths 1024 trained using gradient descent on 3
data points. Left: networks with Radial Basis Function (RBF) activation. Right: networks with
Rectified Linear Unit (ReLU) activation.

Figure 1.1 shows the converged functions obtained by training multiple neural nets with
different initializations. The predictions have high variability in some regions of the input
space, which lowers the model’s reliability since we cannot be sure that the trained network
will give us consistent results. Moreover, we have to hope that the initialization of the
network is favorable for our task. There are practical reasons for ensuring that the model
training is initialization-robust:

1. Reliability — We can trust the trained network more if we can ensure that the pre-
dictions made by it do not vary too much due to randomness in its initialization; it is
important to ensure that it will give answers which are not subject to chance.

2. Explainability — When choosing specific data points for training, it’s essential to
establish a connection between the training process using the queried data and the
performance of the resulting model. Moreover, when the model generates a prediction,
we aim to quantify the extent of uncertainty attributable to the inherent randomness
within the model.

Simply retraining the network several times and selecting the run which resulted in the
best performance (according to some metric) can help control the error due to randomness
in network initialization. This is feasible in cases where the cost of data acquisition is low,
and the computation budget is high. However, this method cannot be used in low-resource
settings.

Since network convergence depends on its initialization, it can be interesting to explore
ways to lower this dependence. One aspect that could be controlled is the choice of the
dataset used for training the network. Data quality might interest a party when the cost
of data procurement is high. This may not be a concern for large companies with enough
resources to acquire large volumes of data. However, it can be valuable for smaller businesses
with limited resources. The cost of acquiring training data may not even be monetary. In
the healthcare setting, for example, labeling is done by experts, and the data needs to be
anonymized, which incurs a high cost that adds up if this needs to be done for the whole
dataset. In cases where no party holds a monopoly on the data but is instead distributed
amongst multiple parties, there may be communication costs to ask for data from each party.

In cases where only a subset of data is to be labeled, it is hard to determine the effect of
the selected points on the performance of the trained network. Therefore, the best strategy
would be to select points that can guarantee good performance of the converged network,
regardless of the (currently unknown) model initialization. With a neural network model,
additional considerations are required:

1. Since neural networks are expensive to train, the active learning algorithm should
ideally require no model fitting to select the points to query labels for. Moreover, it is
more convenient for the concerned party to collect all the points at once instead of in
batches.

2. We should be able to link the subset chosen directly with how uncertain the predictions
will be. Ideally, the algorithm should select data points that minimize the uncertainty
in the predictions due to random initialization. Moreover, the algorithm should also
be able to guarantee the generalizability of the trained model.

3. The algorithm should require little to no modifications to the training workflow. In
other words, there should not be a need to change the neural network architecture or
the training process (into, say, a Bayesian neural network, which can more explicitly
capture the predictive uncertainty) to accommodate the active learning algorithm.

To this end, several works have proposed techniques for performing neural active learning
— selecting a small subset of data points to be labeled and be used for training a neural

network (see Subsection 2.4.4). However, these methods have primarily focused on improving
generalization performance but have not considered robustness metrics. Consequently, in our
work, we consider the variant of neural active learning problem which addresses the issues
of wnitialization-robustness while adhering to the abovementioned concerns.

1.2 Contributions

In this work, we introduce the Expected Variance with Gaussian Processes (EV-GP) criterion
(Section 3.4) which selects data points that simultaneously lead to low generalization error
and high initialization robustness. For this, we use the characterization of training dynamics
given by Neural Tangent Kernel [26] (Section 2.4), and use the predictive distribution of the
trained network to measure the output variance. We also introduce an approximation of the
output variance and prove a theoretical bound on its quality. Finally, we prove that this
approximation provides an upper bound for the generalization error. Hence, our criterion

1. is label-independent and therefore, does not need the heuristic of pseudo-labels,

2. is training-free, i.e., its calculation does not require any network training and is, hence,
able to sidestep significant computational expenses,

3. only requires calculating the variance at individual test points rather than the full
covariance over the testing set,

4. can make use of the approximation techniques based on sparse Gaussian processes
(Subsection 2.3.2) for which we replace the full-rank posterior with its sparse counter-
parts,

5. minimizes the output variance at individual test points, as well as bounds the gener-
alization error at them,

6. is monotone submodular, and therefore a greedy approach involving selecting the points
which give the largest increase in the criterion is guaranteed to provide a (1 — 1/e)-
optimal solution.

We also present the results of extensive regression and classification experiments to demon-
strate that our EV-GP criterion performs better than existing baselines in terms of both
predictive performance and initialization robustness.

Chapter 2

Background

In this chapter, we review the relevant literature for our work. First, in Section 2.2 we
present the current progress in neural active learning and identify the gap that our proposed
work aims to fill. Then, in Section 2.3 we discuss Gaussian processes and sparse posterior
approximations for computation speed-ups. Finally, in Section 2.4 we discuss the neural
tangent kernel and its relevance to our work.

2.1 Problem Setting

Consistent with previous works on active learning (AL), we assume that we have an unla-
beled pool of data Xy € X which we can query labels for, where X is the input space. Also
suppose that we have some test points X7 C X which we want our network to eventually
make predictions on. Note that in our case we do not assume that X, and X are the same,
or that X is a subset of X;. Also note that we do not require the true labels yr of the test
data for our AL problem.

We assume to start with the labeled set £y = (Xg,yo), which might be empty. Our
algorithm should proceed to select a subset of data points, X, C Xy, with | X, | < k, where
k is the budget for our algorithm — a limit on how many labels can be queried from the
oracle. In the pool-based AL setting, we are able to see all of Xy in each round whereas in
streaming setting of AL, unlabeled data arrives in a stream and the algorithm must choose
to query the arriving data point or to ignore it [8]. In each round, the algorithm will select b
unlabeled points, X, C Xy, to submit to the oracle, where b is called the batch size. For each
data point in a batch, x; € Xy, the oracle will return a noisy observation, y; = f (x;) + &,
where f is the true underlying function and &; is i.i.d. noise. We will collectively refer to the
observations for the queried points as y7..

Once the budget has been exhausted, the queried data D = (X, y) can be used to train
the neural network f (-;6). The parameters are initialized using the Xavier initialization [18]
(see Subsection 2.4.1 for more details), 6y ~ init (#), and the network is trained using the

4

regularized Mean-Squared Error (MSE) loss:

L0\ — 1 1 C0Y a2 A 2
LD:0) =5 D, gf@:0)—ul*+ 510l
(x,y)€D

where A controls the trade-off between minimizing the MSE term and the regularization
term. For our our theoretical analysis, we restrict ourselves to the regularized MSE loss. In
practice however, other loss functions such as the cross-entropy loss may be used. We assume
that the network is trained until convergence to obtain the parameters 6., = train (6), where
train (-) is the network training function. As discussed in Chapter 1, our aim is to ensure
that the converged model has low generalization error and the predictions have low variance
with respect to variability in 6.

2.2 Neural Active Learning

AL is a well-studied problem within classical machine learning [59]. In the case of neural
networks, however, the problem is less straight-forward due to a number of reasons:

1. An AL algorithm for neural networks should be able to select points to query in batches.
This is because the network performance is not noticeably affected by the addition of
one point in the training pool. Hence, selecting one point at a time is inefficient.

2. The AL algorithm must not require retraining of the network every time some points
are labeled since neural networks are very expensive to train.

3. The randomness in the network may affect its output and hence, should be taken into
account. It may arise from multiple sources such as model initialization and stochastic
gradients (if one is to train the network using stochastic optimization algorithms [56]).
This variability may affect the test loss, measured accuracy or measured uncertainty.

4. Tt is difficult to reason about a neural network’s uncertainty due to a lack of a proba-
bilistic interpretation. There are methods to interpret the output of neural networks
as probabilities, for example, by treating the softmax output as class probabilities [7].
However, they may not be a true reflection of the uncertainty of the model [49]. There
are also Bayesian neural networks which can more explicitly capture the predictive
uncertainty [38, 44]. However, this may require alterations in the training procedure.

Despite these limitations, AL with neural networks has been extensively studied, and
its application can be seen in areas such as computer vision, natural language processing,
and more [55]. The currently proposed algorithms can mainly be placed on a spectrum —
on one end are algorithms based on sample diversity, and on the other are those based on
uncertainty in the model prediction.

2.2.1 Diversity-Based Algorithms

In diversity-based AL, the goal is to select a subset of data based on how similar the data
points are according to some representation. These measures can be thought of as functions
which indicate how similar (or dissimilar) two samples are. A good subset of data, therefore,
should be diverse, so that it is a good representation of the underlying input space.

Discriminative Models on the Input Distribution

One way to select a diverse set of data points for labeling is to train a discriminative model
that can be used to determine if points similar to a given unlabeled point have already been
included in the active set. For example, [17] proposes a method which uses a binary classifier
to directly discriminate between the set of labeled points and that of unlabeled points. Then,
the algorithm can select the points which the discriminator predicts to be different from the
labeled set. Upon receiving the labels for these points from the oracle, the discriminator can
be updated with the new labeled set and the process repeats.

Instead of discriminating the input data directly, we can do so instead on some latent
space. For instance, the Variational Adversarial Active Learning (VAAL) algorithm uses
a variational autoencoder (VAE) for learning an embedding function that can be used for
discriminating the labeled set from the unlabeled set [62].

Certain improvements have also been made to VAAL to incorporate information in the
network function evaluation at the data points. For instance, [73] proposed state-relabeling
VAAL, which uses the predictive uncertainty along with the latent representations to dis-
criminate between data points. In a similar vain, [28] proposed task-aware VAAL, which
instead uses the predictive loss to aid the discriminator.

A limitation of these methods is that they require an additional model, usually another
neural network, to learn from the samples which have already been selected by the algo-
rithm. This adds to the computation cost of selecting the points since we have to train
this addition model on the labeled points. Moreover, we need to engineer a discriminator
that can distinguish between the latent representations, and the errors form these sources
accumulate.

Distribution Matching

An alternative method for choosing the active set involves treating the problem as a dis-
tribution matching problem. This entails creating an active set that closely approximates
a target distribution, typically the distribution of the unlabeled data. Several measures of
distribution divergence have been proposed in AL research:

e Maximum Mean Discrepancy (MMD) — The MMD between two distributions p and ¢
on X is defined as

MMD (p, q, F) = ?612 |Exmp [f (X)] = Exrng [f (X))]]

6

where F describes a class of functions f : X — R. F is often defined to be a unit ball
in some Reproducing Kernel Hilbert Space (RKHS), in which case MMD (p, ¢, F) = 0
if and only if p = ¢ [19]. If the MMD is non-zero, it can indicate the degree of dissim-
ilarity between the distributions. Moreover, the MMD can be calculated empirically
by utilizing the sample mean as an approximation for the expected value over the dis-
tribution. To use the MMD as a measure of distribution divergence, the problem can
be reformulated as a linear optimization problem whose objective is to minimize the
empirical MMD between the active set and the currently unlabeled samples [9].

e H-Divergence — The H-divergence between two distributions p and ¢ on & is defined
as

dw (p,q) =2 sup Pxp) (B (%) = 1) = Prgrx) (h(x) = 1)|

where H is the hypothesis class [5]. The H-divergence between the active set and
the unlabeled set can be minimized by training a classifier that can be trained to
distinguish between these sets of points [17].

e Wasserstein Distance — The Wasserstein m-distance between two distributions p and
g on X is defined as

1/m
W (pa Q) = (inf E(x,y)N'yd (.I', y)m)

Y€l (p,q)

where I' (p, q) is the set of all probability measures on X x X" such that

l/ﬂ%@@zp@)am

/vmwazmw

Intuitively, the Wasserstein m-distance measures the minimum cost required to morph
the probability distribution p into ¢, and hence, draws similarity with the edit distance.
The AL process proposed by [61] involves alternating between selecting a new batch
of data that minimizes the Wasserstein 1-distance and finding the optimal hypothe-
sis through model training. However, computing the exact Wasserstein 1-distance is
NP-hard and challenging to approximate. To address this issue, a technique based
on Kantorovich-Rubinstein duality can be used to reformulate the computation of the
Wasserstein 1-distance as a min-max optimization problem that involves training ad-
ditional models.

Output Diversity

Another approach for selecting an active set involves using a embedding function, h, and
performing diversification on the latent space. The latent space is expected to have a reli-
able similarity metric, d, which can be used by existing diversification algorithms to choose

a high-quality core set.

A good representation for the input data could just be the model prediction, i.e., h(z) =
f(z;0) [58]. With this representation, the AL problem can be rephrased as a k-center
problem, where the goal is to construct an active set that minimizes the backward Hausdorff
distance to Xr:

X = argmin max mind (h (), h
1 = axgmin max min d (h z) . (1)
IX|<k
We can then use either a greedy algorithm to solve the problem. An integer linear program
can be solved to obtain a better solution.

Discussion

In this section, we have reviewed various methods for selecting data points based on measures
of diversity. We have observed that common approaches rely on using a metric to measure
similarity (or dissimilarity) between the data points or their latent representations. One
major limitation of diversity-based methods for AL is that they typically rely on construct-
ing a representation of the data to achieve diversification. This often involves training an
additional, often costly, model, or otherwise using some heuristic that may not have a direct
connection with the predictive ability of the neural network. In such a case, the algorithm
may not provide strong guarantees about the predictive uncertainty of the network trained
on the queried data.

2.2.2 Uncertainty-Based Algorithms

In uncertainty-based AL, the goal is to select points to query based on the prediction made
by some model. An input can be judged based on the degree of uncertainty in predicting its
label, or on how correlated the prediction is to that on another input. In machine learning,
there are two main types of uncertainty - aleatoric and epistemic. Aleatoric uncertainty, or
sometimes referred to as data uncertainty, is due to the inherent randomness in the true
labels. An example of data with high aleatoric uncertainty would be points which lie close
to the decision boundary. Meanwhile, epistemic uncertainty, which is sometimes referred to
as model uncertainty, is due to incomplete knowledge. Regions where enough training data
is available will have low epistemic uncertainty, whereas regions where few points lie will
have high epistemic uncertainty. Epistemic uncertainty can be reduced if the data selection
algorithm chooses to query more points from under-represented regions. In this literature
review, we will concentrate on how to utilize these uncertainty measures to construct active
learning criteria.

Model Prediction as Degree of Uncertainty

One way to obtain uncertainty estimates from a neural network is to use a probabilistic
interpretation of the network output, y = Ir(x;#). For instance, for classification problems,
one can interpret the multi-dimensional output of a neural network as a logit and then apply
the softmax function to obtain class probabilities. These probabilities can then be used to

construct common AL criteria, such as the maximum uncertainty, max; 49, or the predictive
entropy, —_; 79 1og gV [59]. Several works employ these classical criteria for neural AL
[69, 52, 23].

Although interpreting the output of a neural network as a probabilistic quantity can be
a useful way to obtain uncertainty information, it is not always reliable. For example, the
network may exhibit high confidence in its prediction when it encounters out-of-distribution
data points. In this case, the network’s output probabilities may not accurately reflect its
uncertainty, and using them for AL would not be ideal.

Epistemic Uncertainty

We may also use epistemic uncertainty measurements to perform AL, and this approach
has been well-studied outside of neural AL. For example, regression and classification using
Gaussian process are non-parametric Bayesian learning approaches with clear epistemic un-
certainty measurements. We will cover AL methods for Gaussian process models in more
detail in Subsection 2.3.3.

Capturing the epistemic uncertainty of a neural network for performing AL typically
requires the use of a modified neural network that has a Bayesian interpretation as this pro-
vides a more concrete measure of epistemic uncertainty. Uncertainty quantification in neural
networks has been extensively studied [1] and several methods, such as Bayesian neural net-
works and their approximations [39, 45, 16, 65], and deep ensemble techniques [35, 21], can
be used to achieve this. These modified network models can be used to explicitly capture
the uncertainty in predictions. One popular technique to capture the epistemic uncertainty
of a neural network is Monte Carlo (MC) Dropout [16], which involves applying a Bernoulli
distribution to the model weights using the Dropout layer, creating an approximate Bayesian
neural networks which can be used with various acquisition functions from classical AL lit-
erature, such as maximum predictive entropy, variation ratios, and mean standard deviation
of predictions. MC Dropout is a commonly used method in AL because it utilizes Dropout
layers that are commonly used in deep learning, adding little additional modification during
training and prediction.

Another class of AL algorithms uses an information theoretic approach for quantifying the
uncertainty in model predictions. The Bayesian Active Learning by Disagreement (BALD)
algorithm [25], for example, selects points that maximize the information gained about model
parameters:

OBALD (Xap (mXL)) =1 [y7 9’X7 XL] =H [y’X7 XL] -]EP(9|XL) [H [y‘X, 9“

Inspecting the expression on the right, we see that the points that maximise the criterion
are the ones at which the model prediction is uncertain (as indicated by the first term), but
the model is expected to be certain over the random draws of parameters from the posterior
distribution (as indicated by the second term). BALD was originally designed to acquire
one data point in each step, following which the network was retrained. Since training takes

a long time, this obviously become a bottleneck for deep learning applications. To make it
practically usable, the algorithm can be altered to select b points with the highest value of

the criterion:
b

aparp ({X1, .., X%}, p (01X1)) = ZH [yi, O1xi, X1]
i=1
However, this does not consider the correlations between the individual points in a batch,
and therefore leads to data inefficiency. BatchBALD [30] was introduced to address this
problem, and it uses the mutual information between a batch of points (instead of a single
point) and the model parameters:

QBatchBALD ({X17 S 7Xb}7p <0|XL)) =1 [y17 -5 Y,y 9|X17 coey Xp,y XL]

BatchBALD represents an enhancement over BALD as it considers the uncertainty within
the batch, thereby preventing the selection of points that are too similar to one another.

Discussion

Uncertainty-based AL methods typically select points based on a measure of epistemic un-
certainty, which allows them to provide better guarantees regarding the uncertainty of the
trained model’s predictions. However, a disadvantage of these methods is that they require
network training since the information about the predictive uncertainty is obtained from
studying the behavior of a model. In many works [25, 29, 30], for example, the uncertainty
is captured by the MC Dropout technique [16] which requires network training in between
batches. Consequently, these methods are much slower and very expensive to use. Although
dropout is a commonly used technique in modern neural networks, it is desirable to perform
AL without adding new layers to the model while still accurately capturing uncertainty.

In uncertainty-based methods, it is important to understand the source of randomness in
the predictions. In methods based on MC Dropout, the parameters are assumed to be fixed,
and the randomness arises from how the Dropout layers are set in a specific forward pass.
However, these methods do not account for the fact that the final trained parameters are
influenced by how the network is initialized, which introduces another source of randomness
in the predictions. Therefore, to achieve initialization-robust training, relying solely on
uncertainty from the Dropout layers may be insufficient.

2.2.3 Hybrid Strategies

Between the two extremes of considering solely the diversity of the input and solely predic-
tive uncertainty, work has been done to take both these measures into account.

The Batch Active Learning by Diverse Gradient Embeddings (BADGE) algorithm [4]
uses the hallucinated gradient space, or the gradient of the loss function with respect to the
weights in the final layer and using the model’s prediction, gs(x), as a proxy for the true

10

label, y:
0
h(x) = 2oL L (f(x;0), go(x))

The choice of using pseudo-labels makes the algorithm label-free and therefore, more ap-
plicable in real life settings. It can be shown that the gradient vectors are dependent on
both the input data representation and also the data uncertainty as captured by the model’s
prediction. The algorithm then proceeds to select points that are highly disparate as well as
high in magnitude, thereby ensuring that the active set selected in each round incorporates

predictive uncertainty and sample diversity.

CLustering Uncertainty-weighted Embeddings (CLUE) [50] was designed for the problem
of domain-adaptive AL, where the goal is to select data points which will result in good model
generalization to some shifted target distribution. CLUE balances between selecting points
with high data uncertainty and those which are diverse in the feature space by viewing
the task as a weighted set-partitioning problem, where the uncertainty in the output of the
penultimate layer of the network is used to weigh each data point.

2.2.4 Gaps in Literature

Thus far, we have examined the AL algorithms that have been introduced for neural net-
works. Diversity-based methods tend to prioritize selecting samples that are dissimilar from
each other, rather than focusing on samples on which the model exhibits uncertainty. Addi-
tionally, they frequently necessitate the use of heuristics for measuring diversity but do not
have a clear link to the predictive capacity of the trained models. In contrast, uncertainty-
based algorithms can better capture model uncertainty in their selection criteria, but often
require costly model training between batches or modifications to the model architecture to
explicitly account for model uncertainty.

An additional constraint of many AL algorithms is that they require some labeled data
before they can be utilized. For instance, in approaches where uncertainty or diversity is
quantified using a trained model, a few labeled points are required for the initial round of
training. This is frequently accomplished by randomly selecting the first batch. However,
this might be unfavorable, especially when a party has a very limited budget and no data
to begin with. In such situations, it is preferable to have an informed means of selecting the
first batch instead of relying on random sampling.

An interesting gap within the AL literature, therefore, is to study uncertainty-based
neural AL algorithms which require minimal rounds of training and which do not rely on an
initial batch acquired through some other method. One way to address this concern is to
develop AL methods that rely on a theoretical analysis of neural networks dynamics. Neural
Tangent Kernels [26] can accurately model the output dynamics of a network, and may thus
make a useful tool for the construction of an AL criterion that does not require any training
yet can capture prediction uncertainty. We will discuss more about them in Section 2.4.

11

2.3 Gaussian Process

Definition 2.1. For any set S, a Gaussian Process (GP) on S is a collection of random
variables (Z; : t € S) such that VYn € N, Vty,...,t, € S, (Zs,,...,2Z,) is multivariate
Gaussian. In other words, any finite subset of this collection of random variables is Gaussian.

Consider a dataset, D = (X,y), where X is a collection of n vectorial inputs, x;, y is
a collection of n corresponding noisy observations, y; = f (x;) + &;, f is the underlying (la-
tent) function, and & ~ N (0,02,,..) is a Gaussian noise which we assume to be independent
across different samples. Note that in this Bayesian setting, we assume that the function
evaluations, f (x), are Gaussian random variables Vx € X, and furthermore, {f (X)}xecx is

a GP over the input space.

For approximating the AL criterion in our work, we will utilise tools from the GP lit-
erature. We will briefly discuss the work related to GPs in this section, including full-rank
computation, sparse approximations and AL for GP models.

2.3.1 Full-Rank GP

Gaussian process regression (GPR) is a non-parametric Bayesian framework that makes
predictions incorporating prior knowledge (using kernels) and provides uncertainty measures
over predictions. In GPR, one assumes a Gaussian prior over the data distribution given
by mean p(-) and covariance matrix X. It is common to assume p(-) = 0 for simplicity,
and that the entries of ¥ are given by some positive semi-definite (PSD) kernel, K (-,).
Consequently, we have

f ~N(0,%)

where £ = [f(x1),...,f(x,)]" and ¥ € R™" is the covariance matrix such that (%);; =
Cov (f (x;), f(x;j)) = K(xi,x;). Given some data, D = (X,y), using Bayes’ Theorem, we
can then show that

frly ~ N (’CXTX (Kx + 02ed) ¥, Kntr — Ktox (K + 02050 1) ™ ’CXXT> (2.1)
where Kx = K (X, X) and Kxx, = Kx,x = K (X, X7) [54].

Performing GPR, unfortunately, can be computationally expensive, especially for large
datasets. This is because a matrix inversion is required for calculating the posterior covari-
ance and this operation is O (n?), where n is the number of points used to fit the model.
Moreover, the exact posterior evaluation requires O (n?) memory.

2.3.2 Sparse GP

Sparse approximations for GP were introduced as a way to approximate the true GP poste-
rior. These techniques have reduced the time complexity for inference to O (nm?) and the
memory requirement to O (nm), for some fixed m < n. A baseline approximation for the
full-rank GP could be to just work with a subset of m data points, instead of the whole

12

dataset of n points, to estimate the posterior. This would lower the computational complex-
ity down to O (m?), which is a significant improvement. However, it is obvious to see that
this is not a very good strategy since we lose all the information in the points not included
in the subset. Hence, in this review, we will focus on sparse methods that use m latent
variables instead to approximate the posterior [51].

We consider m inducing variables, u = [y, . . . ,ym]T which are function evaluations at a
set of m points, U = {xy,...,x,,} C &, which we call the inducing points. We can then
express the joint distribution of f and fr as

D (£, £r) = / p (£, Er. u) du — / p (£, £r[w) p (u) du

where u ~ N (0,Ky). This is an exact expression for the joint distribution and we can
approximate it by assuming conditional independence between f and fr given u:

p(£.£r) ~ q (£, £r) = / ¢ (£1w) ¢ (r]u) p (u) du (2.2)

The exact conditional distributions can be calculated as noise-less versions of GP posterior
given in Equation 2.1:

flu ~ N (KxuKg'u, Kx — Ox)

2.3
frlu ~ N (Kx,uKg'u,Kx, — Ox;) >

where we define Qap = ICAUIC{JIICUB and Qo = Qaa. Now, we discuss sparse methods
that approximate the conditionals in Equation 2.3.

Subset of Regressors

The Subset of Regressors (SoR) algorithm [63] is a linear model with a particular prior on
the weights:
wu ~ N (0,K)

so that for any x € X we have
f (X) = ,CXUWU (24)

This set up allows us to recover the exact GP prior on the inducing variables, u = Kywy:

E[u] = KyE [wy] =0
Cov(u)=E [uuT} = KyE [WUWITJ] Ky =Ky

so that u ~ N (0, Ky). Now, we can substitute wy = Kg'u in Equation 2.4 to get
f (%) = KyuKgha

13

This implies that there is a deterministic relationship between f (x) and u, and so, the
approximate conditionals in Equation 2.2 can be written as

SoR

f|u ~ (ICXUICGIU, 0)

Note that the SoR model implies a zero conditional covariance on the prior. We can now
write the approximate joint prior from Equation 2.2 as

Ox 9xx
f.f7) =N {0, T 2.5
7(f.fr) ([QXTX QXTD (2:5)

Under the SoR model, the posterior distribution is given as
frly o (UEOQise/CxTUSXU/CUX% Kx,uSxuKux,) (2.6)

where Sxu = (0. KuxKxu + /CU)_l is equal to the posterior on the model weights, wy.

This approximation is equivalent to performing exact GP inference with the degenerate
kernel function

Ksor (x,%x") = K (x,u) ICI_JlIC (u,x")

The SoR model is much cheaper than performing full-rank GP inference — the computa-
tional complexity for fitting to the labeled dataset is now O (nm?), and O (m) and O (m?)
for calculating the posterior mean and variance of each test point, respectively.

Unfortunately, this approximation is quite restrictive since the GP prior implied by it
has only m degrees of freedom and is thus, degenerate. Since only m linearly independent
functions can be sampled from the prior, the posterior is severely constrained even with a
small number of data points. This leads the model to often make nonsensically overconfident
predictions, which is a common problem for finite linear models [53].

Deterministic Training Conditional

To tackle the nonsensical predictive uncertainties of the SoR model, [57] introduced the
Projected Latent Variables (PLV) model, which assumes the projection f = ICXUlCﬁlu, SO
that)
4 -~ 1. 2
y|f = ylu~N (KxuKg'a, 0fgi.1)

noise

An alternate formulation of this assumption would be to approximate the training conditional

as
DTC

f\u ~ (/CXUICE]lu, 0)
which gives it the name Deterministic Training Conditional (DTC) approximation. Note that
the training conditional for the DTC model is the same as for the SoR model (Equation 2.3).
The DTC model, however, differs in its use of the exact test conditional instead of an
approximation:

q (fr[u) = p (fr|u)

14

This reformulation allows us to perform exact inference, however, using approximate priors.
We can now write the approximate joint prior from Equation 2.2 as

q (£, fr) —N(o,[Ox %ZTD

Ox,x

This approximation is very similar to the one given by the SoR model in Equation 2.5, and
the difference comes from the exact formulation of the test conditional. Under the DTC
approximation, the posterior distribution is given as

C _
frly "~ N (052 KxruSxuKuxy, Kxy — Oxy + KxpuSxuKux,)

where Sxy is as defined in Equation 2.6. The posterior mean given by the DTC model is the
same as given by the SoR model (Equation 2.6), but the covariance has an additional term,
Kx, — 9x,, that accounts for the reformulation. Note that Kx, — Ox,. is positive definite,
and hence, the variances at individual test points as predicted by the DTC model are higher
than as predicted by the SoR model. This addresses the problem of making erroneously
overconfident predictions.

It is interesting to note that, unlike in case of the SoR approximation, the DTC model
does not correspond exactly to a GP. This is because the covariance values depend on
whether the points have been included in the training set or not, thus violating consistency.
The computational complexity is the same as for the SoR model.

Fully-Independent Training Conditional

The Sparse Gaussian Processes using Pseudo-inputs (SGPP) approximation [64] uses a richer
covariance function than the DTC model, and proposes a more sophisticated likelihood
approximation:

y|f é y|u ~ N (’CXUIC{JlLI? dlag [ICX - QX] + 01210ise[)

FITC

where diag [A] is defined as the diagonal matrix with entries matching that of the diagonal
of A. An alternate formulation of this assumption would be to approximate the training
conditional as

flu e (KxuKg'u, diag[Kx — Ox]) and ¢ (fr|u) = p(fr|u)

Unlike SoR and DTC, FITC does not assume a deterministic relationship between f and u,
but instead imposes a conditional independence assumption:

n

q(f[u) = [[»(fil)

=1

which gives it the name Fully-Independent Training Conditional (FITC) approximation.
Moreover, as in DTC, the exact test conditional distribution (Equation 2.3) is used. For a

15

single test case, the approximate joint prior implied by FITC is given as

B Ox + diag [Kx — Ox] Oxx
oo [o gt)

FITC improves on DTC by replacing the variances of the training points with the exact
values. Under the FITC approximation, the posterior distribution is given as

grrre (frly) = N (KxuSxuKuxA ™'y, Kx — Ox + KxuSxuKux)

where we have redefined Sxy = (Ky + /CUXA*llCXU)_1 and introduced A = diag [Kx — Ox + ¢

The computational complexity is the same as for SoR and DTC. For more than one test case,
we can do one of two things:

1. use the exact full test conditional as in Equation 2.3, but then the FITC approximation
would not correspond to an exact GP since the covariance calculation is different for
training and test points

2. extend the conditional independence assumption to the test points, in which case the
Fully Independent Conditional (FIC) approximation is equivalent to performing exact
GP inference with the non-degenerate kernel function

Kric (%,X) = Ksor (x,X') + 0 (x,X') [K (x,X') — Ksor (x,X')]

where 0 (-,) is the Kronecker delta function. The effective prior implied by FIC is

B Ox + diag [Kx — Ox] Oxx
¢ (f’ fT) n N (0’ |i QXX Qx + dlag [ICx - Qx]‘|)

2.3.3 AL for GP

The problem of AL has also been extensively studied within the GP literature. This prob-
lem is similar to Bayesian optimization, which is a technique of zero-order optimization, but
differs in that in AL we are more interested in learning the overall function rather than just
the optimal point for the function. From the point of view of Bayesian optimization, AL can
be thought of as focusing on the exploration aspect and not on the exploitation.

Due to the Bayesian nature of GPs, it is simple to use the uncertainty measures in
selection of an active set. Similar to the AL problem as described above, the goal is to
select points which will give as much information about the global distribution as possible
and therefore, the selected points should cover the input space well, while also not be too
similar to each other. [32] suggested that the mutual information criterion between the
active set and the remaining data is a useful criterion. It has also been shown that greedily
selecting points which maximise the mutual information is a good enough strategy due to
the submodularity of mutual information.

16

2

noise

1.

2.4 Neural Tangent Kernel

In order to choose data points that, when used to train the network, will ensure initialization
robustness, we need to examine how the network will evolve under gradient descent. A
notable work within this area is based on the theory of neural tangent kernels.

2.4.1 Network Parameterization

First off, we work with a particular parameterization of neural networks as defined in [26].

Definition 2.2. Define f (:;0) as a multilayer perceptron with L hidden layers of widths
ki, ko, ..., kr. Let the input dimension of the network be ko and the output dimension k1.
Let the network be parameterized as

1
hO () = ¢ (ﬁwmhﬂ—” () + b@) . Vie[l,... 1]
l

f (l‘) _ W(L+1)h(L) (SC) + b(L+1)

where I/Vl-(jl) ~ N (0,0%,) and bg) ~ N (0,0?) are model weights and biases initialized ran-
domly from a Gaussian distribution with variances o, and of respectively, and ¢ : R — R

1s a Lipschitz twice differentiable non-linearity function with bounded second derivative.

Note that the model is parameterized differently from usual due to the 1/v/k; factors.
This is for making proofs in the asymptotic case (nq,...,ny,_; — o) convenient. However,
the initialization of the neural network is still based on sampling from a Gaussian distribu-
tion which is comparable to classical initialization methods.

We will write the model parameters as 6§ = flatten (W, oM, ... W b)) and <! =
flatten (W(l),b(l), N (740N b(l)). We will also sometimes use f (z;6) to denote the model
output, f (), explicitly stating the dependence on the parameters, . The model output is
given by y = f (z;0), and the model is trained with a loss function, £ (g,), where y is the
true label corresponding to the input x.

2.4.2 Training Dynamics

Suppose we have a neural network whose parameters are given by #. We would like to train
it using gradient descent, i.e., using the update formula 6,1 <— 0, —n - VoL, where n is the
learning rate. For a small enough learning rate, we can approximate this process as gradient
flow, given by the differential equation

0, = -Vl = —nVofi (X)' V1L (2.7)
We can then write the change in the function prediction as
Fi (X) = Vo fi (X) b, = =0V fi (X) Vo fe (X) ' VL (2.8)

17

The term O, (X, X') £ Vyf; (X) Vof,” (X') is referred to as the (empirical) neural tangent
kernel (NTK) [26, 36]. In words, this kernel is the outer product of the gradients of the
model outputs with respect to its weights. At finite-width, it will depend on the specific
random draw of the parameters.

The NTK has interesting properties for wide neural networks, i.e., when

min k; — oo
1€{1,2,....L}

When a neural network is wide enough, it can be approximated as a linear model [36],
f0) = [(x;0) = f(x;60) + (Vo f (x;60) 60 — o)

where 6y ~ init (f). The condition for linearity can be further relaxed to when the Hessian
norm of the network approaches 0 as the network width increases [37].

In the infinite width setting, empirical NTK at initialization converges in probability to

a deterministic kernel, Oy 2 ©, which is referred to as the analytical kernel [36]. This kernel
stays constant during the training process. We will overload notation sometimes and write
@XX/ = @(X,X/) and @X = @XX-

A linearized neural network is a useful approximation since, assuming the model is trained
using squared-error loss

1
Lx,y:0) = 5111 (x:0) =y, (2.9)
the gradient of the loss is given by VoLpm = Vyf (x;6p) and a closed-form solution of
Equation 2.7 and Equation 2.8 can be computed. Under this approximation, for a randomly
initialized neural network trained on the data D = (X,y) until convergence, the prediction

of the converged model will follow the distribution
fXr) ly ~ N (pnw (Xr|D) , Enn (X2|D)) (2.10)
where the predictive mean is given by
iy (Xrly) = Ox,x0%'y,
and the predictive covariance by

S (Xrly) = Kxp + Ox,x0%' KxO%' Oxxr
— (0x,x9% Kxx; + Kx,xO%' Oxx7) » (2.11)

where the kernel
K (X7X/> = EGONinit(G) [f (x;600) - f (X/; 0o)]
is the covariance of the model output with respect to the random initialization [36]. In the

case where model regularization is added to the loss function, we can replace ©x and Kx with

18

Ox + A2 and Kx + A1, respectively. From this, we are able to see the converged neural
network has predictive mean equivalent to that of kernel regression, and has predictive
covariance which depends on the model architecture and the input data. This result is
important since it allows us to understand how the randomness in initialization affects the
final predictive distribution. Unfortunately, a similar closed-form distribution cannot be
formulated for neural networks which are trained under a different objective, such as the
cross-entropy loss, which is commonly used in classification problems. The best that one can
hope to do is to solve Equation 2.7 and Equation 2.8 numerically.

2.4.3 Approximating Ynn using GP Posterior

Unfortunately, one issue with this criterion is that the covariance matrix >y is expensive to
compute. We therefore, propose to consider, as a proxy, a covariance which shares similarity
with that in GP instead.

If we were to perform GPR (Subsection 2.3.1) on some data assuming the NTK as the
covariance function, which we will call the NTKGP [21], then the predictive distribution will

be f(Xrly) ~ GP(untrer(Xr|y), Entrep(Xrly)), where

puntrep (Xrly) = @XTX@;Y
Enrrep(Xrly) = Ox, — GXTXG)_(l@xxT- (2.12)

The covariance function, YxTkap, is simpler to work with for two reasons:

e Only the NTK, ©, needs to be computed, and not the kernel K. Furthermore, NTK
is simple to approximate since it is defined as the inner product of the model output
gradients with respect to the parameters.

e The posterior distribution of GPs are well-studied, and there are many tools available
for approximating it, like those introduced in Subsection 2.3.2.

2.4.4 Applications

Due to the guarantees on predictive distribution, NTK is a useful method of obtaining
uncertainty measurements from neural networks. For example, [21] provides a method of
augmenting a neural network such that training it using gradient descent is equivalent to
drawing a sample from some GP posterior distribution. This is useful since it is no longer
necessary to invert a large matrix in order to compute the posterior distribution and there-
fore, it allows a more convenient method for performing Bayesian inference.

The measurements in uncertainty that the NTK provides are also useful for data valua-
tion. For example, [71] uses NTKs to value a dataset based on the expected generalization
loss after training. A benefit of such method is that data valuation can be done at the model
initialization stage, without having to perform any actual model training.

19

In a similar vein to data valuation, NTKs can also be used in picking useful data points
for AL problems. [70] presents a streaming-based AL algorithm which selects points based
on the uncertainty in the trained network’s predictions. It selects query points based on the
generalization loss from the NTK theory, however only provides limited empirical results and
limited theoretical guarantee when the points are selected in batch mode. The most notable
attempt in applying NTKs to AL is the Most Likely Model Output Change (MLMOC)
algorithm [42] which uses linearized models to predict how a network will behave if some
data point was added to the training set.

2.4.5 Limitations

As mentioned, the theory of NTK assumes a network with NTK parameterization and whose
hidden layer widths approach infinity. [2] has established an error bound on the approxima-
tion of the NTK in terms of the network width. In practice, many AL algorithms based on
NTKs calculate their criterion using the empirical NTK of the finite-width neural networks
in use, yet they record good performance. For most choices of (o3, oy), the NTK converges
exponentially to a constant as the network depth increases [20]. This is another limitation
of the NTK regime — it will break down as the network gets too deep.

20

Chapter 3

Theory

In this chapter, we establish the theoretical results of our work. First off, in Section 3.1 we use
the theory of NTKs, as described in Section 2.4, to model the variance in the neural network
output w.r.t. initialization. We then use tools from linear algebra and sparse GP literature,
as discussed in Subsection 2.3.2, to introduce a computationally efficient approximation of
this quantity. Furthermore, in Section 3.2, we derive a theoretical guarantee on quality of this
approximation. In Section 3.3, we show that the approximation can also be used to bound
the generalization error of the network at individual test points. Finally, in Section 3.4, we
construct an AL criterion using the approximated output variance.

3.1 Output Variance of the Trained Network

In Subsection 2.4.2, we saw that if an infinite width neural network with initial parameters
0y is trained till convergence, then the predictions of the converged network at the test points
follow a GP (Equation 2.10), where the randomness comes from the initialization of 6, [36].
Hence, we can use Yy (Equation 2.11) as a natural and principled measure for initialization
robustness. Unfortunately, ¥xn requires the computation of two different kernels, © and IC,
and it involves multiple matrix operations and the inversion of the n x n NTK of the training
set. This puts the computation complexity of Yxx at O (n?), making it unusable in practical
settings.

To approximate the output variance efficiently, we can replace the covariance matrix,
YnnN, with Yntkep (Equation 2.12). This would reduce the number of matrix computations
to just one — the NTK, ©. Even though the computation of Xxrkagp still incurs a cost of
O (n?) due to the inversion of ©, we can reduce this cost down to O (n?) by performing
low-rank updates in each round of AL. We can further reduce the dependence on n using
sparse GP techniques discussed in Subsection 2.3.2.

21

3.2 Approximation Quality

Since Xnn (X7|D) < Enrrae (Xr|D) [21], we have that for a single test point,

oxn (x7|D) < oXrkap (x7/D)
where 0¥y (x7|D) = Xxn (x7|D) and ofrkap (X7|D) = Enrtkep (x7|D). Therefore, we
have that odrkqp (Xr|D) overestimates the true output variance, oy (x7|D). To theoreti-

cally justify our choice of approximating >ny with Xntrap, we will derive a bound on the
approximation error for neural networks with ReLLU activation.

3.2.1 Dual Activations

We first recall the concept of dual activations, as introduced in [13, 36].

Definition 3.1. The dual of an activation function ¢ : R — R is a real-valued function
defined on the space of 2 X 2 positive semi-definite matrices,

A(A) = Eupynon [0 (w) ¢ (v)]
Similarly, if we let ¢’ be the derivative of ¢, then its dual is defined as

¢ (A) = Ewy~non) [¢ (w) ¢ (v)]

3.2.2 Network Parameterization

Consistent with [36], we work with the network parameterization as described in Subsec-
tion 2.4.1. Furthermore, we assume that the activation function, ¢, is scaled so that

(4 1)~

In the later sections, we will see that this assumption will help simplify the repeated
application of the activation function to a given input.

3.2.3 Relationship between K and O

Since YnTrap is obtained by replacing K with © in the expression for Xy, it is interesting
to note the relationship between the two kernels. The following lemma is taken from [26].

Lemma 3.1. For a neural network in the infinite-width regime, IC and © can be defined

22

recursively as

KO (x,x') = x"x' + o7

0 (x,x') =0

N < (KD (x,x) KD (x, %!
,C(l) (X’X) - ¢ (|:IC(Z_1) (<X/7X)) K(l_l) ((X/7X/)):|) + 0—13, l E {1’ LRI 7L + 1} (32)

00 (x,x) = KU (x,x) + 0V (x,x') - KV (x,%) le{l,--- ,L+1} (3.3)

where we define

KO (x,x') = ¢/ (L’gfff((jjﬁ) ﬁfﬁfjj’;ﬂ) (3.4)

Notice that Equation 3.3 gives a recursive formula for computing ©. If we “unroll” this
formula, we will obtain

L+1 L+l
O (x,x') = Z K® (x,x") H K9 (x,x) (3.5)
I=1 v=i+1

Given Equation 3.5, to bound © (x,x’), we simply need to provide bounds for each of KW
and K® individually. This can be done by inspecting the dual activation functions.

3.2.4 ReLU Dual Activation Function

We will rescale the classical ReLU activation function as ¢ (z) = v/2max (x,0) so that its
x'x xTx]

/

dual satisfies Equation 3.1. [36] showed that for ReLU activations, if A = L{ Ty xTx/

then

- 1
o (N) = ;||x||2||x’||2 (sinf + (w — #) cosf), and

& (A)=1- i where

T
T/
0 = cos™! (X—X,)
IS
For convenience, define the function p : [-1,1] — R, where

p(r):q”sq?{ ﬂ) =%<\/l—77“2+r(7r—cos_lr)> (3.6)

This can be thought of as a re-parametrization of the dual activation function ¢ in the case
where [|x|| = ||x'|| = 1, and 7 = cos § is the cosine distance between x and x’. We can also
define p’ similarly but on the dual activation ¢’ instead,

pr)=9¢ (E ﬂ) Lo (3.7)

™

23

Using these definitions, we can verify that
¢ (A) = ||| - p(r), and
¢'(A) =p'(r)

Definition 3.2. For any function f, define the notation f™ (x) = (fo---o f)(x).
~———

m times

Definition 3.2 can be thought of as recursively applying function f to the input m times.
For our dual activation function, we can show that repeating the function input will still
result in a non-decreasing function.

Lemma 3.2. For anyn € N, p" (r) is a non-decreasing function.

Proof. We use induction on n. For the base case of n =1,

dp cos~lr

dr(r):1_

> 0.
7r

Moreover, from Equation 3.6 we have that p(—1) = 0 and p (1) = 1, implying that
p(?”) S [07 1] - [_171]7 Vr € [_171]7

and hence, p™ (r) € [-1,1], Vn € N.

Now, assume that p™ is a non-decreasing function. Consider r,s € [—1,1]. If r < s, then
p"(r) < p"(s). Since we know p"(r),p" (s) € [—1,1], we can conclude that p"*!(r) <
pn+1 (S)]

Similarly, we can show that the dual of ¢’ is non-decreasing.
Lemma 3.3. p' is non-decreasing with respect to r.

Proof. Differentiating Equation 3.7 we get

LA S
ir I

Hence, p’ is an increasing function. 0

3.2.5 Bounding K with p
We will first establish a relationship between K and p.

Lemma 3.4. Forle{l,...,L+1},

KO (x,x') = Vut=9 - p (r?) + o}

l KO- (x,x’
where Y = (||x||? + lo?) (|x¥]|? + lo?) and rd) = ﬁ

24

Proof. We use induction on /. For the base case of [=1,
- K (0) (0)
K(l)(X,X,):gb([o~ (x,x) ’CO)(/)}>+gg
(x',x) K (x',x')
- xT'x xTx .
N xTx xTx %

T /
— Il - p <|| & ,H) T o2

Now, assume that £© (x,x") = vul-D . p (r&”) + o7 holds. Then,

I+1 N1 KO () (ny) 2
IC()(va)—¢< ICZ (X X) /C(l (X/,X):|) + 0y
(TP (=102 p(1) + o KO (x,) P
‘¢(KOx) <||><'|P+<Z—1>o§>p<1>+a§D+ b

~ . 2 2 O /
¢(Ix|* +loy K (X>X)}>+O§

KO %) 2]]* + loj

KO (x,x")
0., ===/ 2
u\ - p (0) + oy

where we use the fact that K (x,x’) < /KO (x,x) - KO (x/,x’). This proves the inductive
step.]

Next, we will bound K% (x, x’) using p.

Lemma 3.5.
pY < KO (x,x) < ¥

where
N =0
0 — ~(l 1)
P+ /3 0—1) p(ﬁ)_‘_ab’ if 1>1

Proof. We use induction on [. For the base case of [=1,

x'x/
j o) (x,x) = [Ix|[l[[x]| - p (”XHHXIH> +U§

as in Lemma 3.4. Moreover, we have that
N(l) o " . :l:]_ 2
pr’ = [x[IX[]| - p (&£1) + o3

We can simply conclude the result for [= 1 since p is non-decreasing.

25

Now, assume that p~(_l) <KW (x,x) < ﬁ(j). Then,

U+ (x,x") = Vu® - p

= P+

A similar logic can be used to show that p_ < K+Y (x,x’). This proves the inductive
step.]

Corollary 3.1. For alll € {1,..., L+ 1},
V=0 (#0) 4 o7 < K0 (x,x) < Va0 p (1)) +

where

fﬁ) =1, and

o -1 if =1,
= A1)\ =2
p (r_ > o >

Proof. Notice that by Lemma 3.5 and due to the non-decreasing nature of p, proving the
_(1—1) (1)
0

. . . p 1) P
corollary above is equivalent to showing that \/ﬁ <r{ and =5 >,

_(1-1)

We WIH start by ShOWiIl that Pt = < T(l) = 1. For the base case Of l - 17 the result 1S
g V- = '+
trivial since

~(0
P

1(0)

_(1—-1)
Now, assume that jﬁ < 1. Since 0 < p(r) <1, Vr € [—1,1], using Lemma 3.4, we have

Y 2 [/=) 4 52 ?
Vo | —)
of +t(x)t(x') + o <2\/t (x)t (x’))

T ol t(x)t(X) + o2 (t(x) +t (X))
<1,

(1—1)

where ¢ (-) = (|| - || + (I — 2) 02). Therefore, jh < 1. This proves the first part of the
corollary.

For the second part, we will use induction on [. It is again trivial to show that the statement

26

~(1-1)
is true for [= 1. Now, assume that % > r®. Then,

~(1-1)
P— 2
(\/u(zn) + Op

u®

~(1) Vul=b - p
)

Mo
Vul=1 . p (r,”) + o
- Vald
S, O ul=1) + o2

where in we use the following result:

Va1 4 o2 N V(=1 o (X +0=1op X+ =-1op 1-1
Va = Vo S\ I+) |+ @y~

This proves the second part of our corollary. O

(3.8)

3.2.6 Bounding K with p

We will first show that we can express K in terms of p'.

Lemma 3.6. Forle {l,...,L+1},

KO (x,x') = p' (rV)

u

where ¥ is defined in Lemma 3.4.

Proof. We can show that
: - (TKEY (x,x) KUY (x, %)
1) AN))
KY (x,x') = ¢ (_/C(l_l) (x',) oG] (x/, X')])

(llzl* + (1 = 2) 07) p(1) + 0 KO0 (x,x') D
KO (¢, x) (l'[1* + (I = 2) o) p(1) + 0}

_ E A i)
(_

KV (xx) [l + (1) o3

Using the result above, we can now bound the values of K& (x,x).

27

Corollary 3.2.
4 (1) < KO %) < f ()

D and fﬂ) are as defined in Corollary 3.1.

where 1>

Proof. From Corollary 3.1, we know that 70 <) < fgf). The result follows from Lemma 3.3.
O

3.2.7 Ratio between K and ©

We will now prove the bound on the ratio between K and ©.

Theorem 3.1. For a neural network with L > 2, if max {||z||, ||'||} < B, then

. L+1 ,
1+Z () LT pf(fm)g%guﬁ

V=l+1

Proof. We will first prove the right hand inequality. We see that

L+1 L+1

O (x,x') l) 1)
IC(X,X’): D %) Z/C XX HIC XX

=41
’u,(l_l) - p S_)) =+ O'g L+1

L
<1+

S Z o) o (A L+1)
L 1 Vul=b 4 g7

/ (fﬁl))

=1+ :
; p <f£L+1>> u®
<1+ L
- 0 (f(_LJrl))
where we use the fact that ui/T;rU” < 1 based on a similar argument used in Equation 3.8.

Similarly for the left hand inequality,

Va + 7 Oh v=is1
L+1

[—1 /
“) e 17 ()
I=1 2

(=) (=)
where we use the fact that % > % > L 1 +1 based on a similar line of reasoning as
O'b u

in Equation 3.8. This proves our theorem. O

From Theorem 3.1, we are able to give a bound for the ratio between © and . While
the constant is defined recursively based on the function p, we claim that this is still useful
since it is expressed in a form which allows it to be computed directly, and more importantly,
we are able to see that such a constant exists.

In the case that there is no bias, we can improve the bound on the ratio between I and
©. The key fact is that in the case without bias, u® is equal for all values of I, and we can
simplify o) = |x|[I<'|| - p'(£1). During the computation, the constant ||x||||x’|| will then
cancel out in several places.

Theorem 3.2. For a neural network with L > 2 and o, = 0,

L+1 L+1 L+1 L+1
ZL+1 [T (#or) (-1 < XX,<ZL+1 s I (Per)
= l’ I+1 l’ I+1
Proof. 1t is easy to see from the recursive form in Equation 3.2 that if g, = 0, then

T /!

KO (x,x") = [|x|||Ix'|| - ¢ (m) Since we know p! is non-decreasing from Lemma 3.2, we

are able to bound

Il l[| - o (=1) < KW (x,x') < [lx][[Ix']] - ' (1) (3.9)

Similarly, we can also see from Equation 3.4 that K® (x,x') = (o' 0 p') (”:{"ﬁ":,”). Since p’ is
non-decreasing based on Lemma 3.3, we are able to bound

(o 0) (~1) < KO (x,%) < (¢ 0) (1) (3.10)

Given that we can write O (x,x’) with the recursive form given by Equation 3.5, it is then

simple to use Equation 3.9 and Equation 3.10 to bound ®(x§:;.]

3.2.8 Bounding the Difference Between onn and onTKGP

From above, we are able to see that it is possible to bound the ratio
<ay (3.11)

for some appropriately set a_ and a, according to either Theorem 3.1 or Theorem 3.2
depending on the value of o, (note that in the two theorems above we show the bounds for
the reciprocal of what is stated in Equation 3.11). Given this bound, we are able to show
the following main result.

Theorem 3.3. For a neural network with ReLU activation and L > 2 hidden layers, if
Ox = 0, then

|012v1v (x|D) —a- UJQVTKGP (X|D)‘ <p

29

where n is the upper limit on the size of the training set, B > |0 (x,xX)|, a € [a_,ay],
ny B2 + 2nyB

v=B -max{a—a_,a; —a}, and f =~y +

K(x,x")
O(x,x’)
© (x,x’) > 0, we can convert the multiplicative bound into an additive bound as

Proof. First, we know that we have € [a_,ay] by assumption. In the case that

K(x,x") >
a-0(x,x)—-K(xx) <
<

and

which can be combined to give |K (x,x') — a - O (x,x')| < v for v as defined earlier. The
same is the case when © (x,x") < 0.

Given this additive bound, we are then able to bound each term which appears in oxy
individually. We can see that

‘ICXX@)_(l(—)Xx — Q- @xX@)_glg)(x‘ ‘(ICXX -« @xX) @}_(1®Xx|

< Amax (0x) [[Kxx — @ - Oxx [Oxxl

1
o (0 -yv/n - By/n

_ nyB
/\min (@X>

IN

Similarly,
‘@xx@;(le@;(l@Xx — Q- @xX@)_gl@Xx} = |@xx@)—(1 (ICX — Q- @x) 9_')_(1®Xx|
S)\max (ICX —a- @X) H®;{16XX”2
= Amax (Kx = @+ 0x) - Anax (0%)” - 1|0
2
< nyB i
>\min (@X)

30

Combining these results together, we obtain

|o%n (X|D) = @ - 0fpap (XID)] = | K + OxxOx ' KxOx' Oxx — Kix Ox' Oxx
— O0,xOx Kxx — @ (O — OxxO%'Oxy) |
< |Kx — aOy]
+|OxxO%' KxOx' Oxx — 4Oxx Ox' Ox«|
+ | KxxOx' Oxx — aOxx Ok Oxx|
+|OxxOx' Kxx — 0OxxOx' Oxx|
nyB? 2nyB

<q+
=7 Amin <@X>2 Amin (G)X)

3.3 Connection with Generalization Error

In this section, we show that the approximate output variance, o txqp, iS also an upper
bound on the generalization error of the trained neural network, and hence, a good indicator
of its predictive performance.

To analyze the performance of the trained neural network, we make the following as-
sumption about the groundtruth function f* [68].

Assumption 3.1. Assume that the groundtruth function, f*, lies in the reproducing kernel
Hilbert space RKHS, He, of the NTK O, or equivalently, its RKHS norm satisfies || f*||ne <
B for some B € Rxy.

Assumption 3.2. Assume that the function observation at any input x; is given by y; =
f*(xi) + &, in which every & is i.i.d. observation noise drawn from an R sub-Gaussian
distribution: E [exp (n&;)] < exp (n?R?/2), Vn € R.

Both the assumptions, Assumption 3.1 and Assumption 3.2, are commonly made in the
analysis of kernelized and neural bandits [10, 27]. They allow us to show the following
theoretical guarantee on the generalization error:

Theorem 3.4. Let the function f* € He and training set D = (X,y) follow Assumption 3.1
and Assumption 3.2. Suppose we train an infinitely wide neural network f(-;60) with mean-
squared error loss function as given by Equation 2.9, using gradient descent until convergence.
Then, for any x € X, with probability at least 1 — 26 over the random observation noise and
network initialization,

: R
|f>‘< (X) — f (X; train (90))‘ S |:B + (X + 1) \ 210g (51:| ONTKGP (X|D) N
where X is the reqularization of the loss function.

31

Proof. Using the triangle inequality, we can show that

|f* (%) = f (x; train (6))]
< T () = X[D)[+ 1 (xXID) = f (%5 0]
< (B+§ 2Mog01) o (D) + | (/D) ~ 6 (3.12)
S (\/ 210g(5) ONTKGP X|D) —+ 210g o—1. ONN (X|D) (313)
S [() \/ 210g5_1:| ONTKGP (X|D) ,

where Equation 3.12 is true with probability at least 1 — § using Theorem 1 of [67], and
Equation 3.13 is true with probability at least 1 — § due to Hoeffding inequality for sub-
Gaussian random variables. By union bound, the statement above is true with probability
at least 1 — 20. O

Theorem 3.4 shows that the generalization error of a neural network trained using gradient
descent is proportional to onTkgp, Where the constant of proportionality, ¢, is independent
of x and D. As a result of Theorem 3.4, we know that minimizing ontkgp Will not only
(a) decrease the output variance, and hence improve initialization robustness, but also (b)
reduce the generalization error and hence enhance the predictive performance.

The degree of correlation between onrtkgp and the generalization performance, repre-
sented by the constant (, depends on the parameters B and R, such that easier the function
f* is to learn (i.e., a smaller B) or lesser noisy the observations are (i.e., a smaller R), the
better the degree of correlation.

Theorem 3.4 is also consistent with the empirically observed characteristics of over-
parameterised neural networks, because neural network models with lower variance are also
observed to have higher predictive accuracy [43].

3.4 AL Criterion

Since we have shown that minimizing oxrkagp (X|D) can improve both initialization robust-
ness (Section 3.2) and generaliztion performance (Section 3.3), we design our AL criterion
based on the minimization of onTkagp (X|D) across all test input points x € Xp. Specifically,
our EV-GP criterion encourages the selection of input data points which result in small
expected output variance o&rxqp (X|D) across all test inputs, and we estimate the expected
variance by averaging o¥riap (X|D) over the available test set Xy

apy (X) = |XT| Z oxrrar (X10) = oXriar (X|D)] (3.14)

xeX

32

We have added o&rkap (X|¢) to the criterion so that agy (X) > 0 and that our criterion is
to be maximized during AL. The EV-GP criterion has multiple computational benefits:

1. Firstly, it is training-free, i.e., its calculation does not require any training of the neural
network and is hence able to sidestep significant computational costs resulting from
model training.

2. Secondly, it only requires calculating the variance at individual test points rather than
the full covariance over the testing set.

3. Thirdly, it can make use of the approximation techniques based on sparse GPs discussed
in Subsection 2.3.2, for which we simply need to replace o%rxep (Equation 2.12) by
its sparse GP counterparts in Equation 3.14.

4. Fourthly, it is monotone submodular, and therefore a greedy approach (i.e., in each
round, select the point that maximizes the criterion) is guaranteed to give a (1 — 1)-
optimal solution [46].

5. Finally, it is label-independent because the calculation of ofpiqp does not require the
test observations, and therefore, does not need the heuristic of pseudo-labels unlike
previous AL algorithms [4, 42].

As noted in Section 3.1, even with the NTKGP approximation, the covariance matrix
computation is O (n?). To make our algorithm suitable for practical settings, we propose
strategies to further reduce the cost of using the EV-GP criterion.

3.4.1 Bounding the Ratio Between agyv NN and agv,NTKGP

It turns out that we are able to get a bound on the ratio of the EV criterion directly when
we use ony versus when we use ontkgp. Considering the case of a single test point, we can
see that using oy, the EV criterion gives

agv N (xX|D) = UI%IN (x|¢) — ‘712\IN (x|D) =2 @xx@illcxx - @xX@;(UCX@)El@Xx >0,
and using onTKGP,
apvNTrGP (X|D) = 0xrkap (X[9) — 0xrkap (XID) = OxxOx'Oxx > 0.
Based on this, we are able to show the following bound.

Lemma 3.7. Assume X is such that Ox,Kx = 0. Let ||Ox||co, [|Oxx|lcc < B and a_ <

K(x,x) -
Bxx) < ay. Then,

2a_ - Apin (Ox) B agy,ny (x|D) < _2uB

B Amin (©x) ~ apynrrep (X|D) ~ Amin (Ox)

33

Proof. For the right hand inequality, we can see that

agy NN (x|D) < 2 - @xx@)}llCXx
apv TGP (X|D) T O,xO0% Oxx
_ 2 A (0x) [10xx | 1Kxx|
B Amin (0%") [0xx]I?
2 (Ox) [
Amin (0%) [|Oxx||
< 2a4+B
~ Amin (Ox)°

Meanwhile, for the left hand inequality,

agvnN (X[D) 2 @xX@)_(lKXx @xx@;;(l’c)(@)_gl@xx

apvntkar (X|D) O,xOx Oxx 0, xO0%x Oxx
o 2 Amin (0x) 19xx[[[1Kxxll Ammax (Kx) [|O%' x|
T Aumax (0X1) [©xx]12 Amin (0%') [|©%' Oxx||?

o 2 dmin (Ox) Il A (Kx)
T Amax (0%) 0%l Auain (Ox)

2 - Amin (O%) |Kxxl| — Amax (Kx)
T Amax (0x) [[Ox«] Amin (©%)
S 2 Apin (Ox) - a— a, B

o B)\min (®X> ‘

]

This provides another method of showing the agreement when using o¥rxqp for our
criterion compared to using oZy.

3.4.2 Incremental Computation of 012\ITKGP

Computing o&rkap (/D) for the active learning criterion is computationally expensive. For-
tunately, we know that in our active learning algorithm, the labeled set X is always incre-
mented by one each time, and so, for computing the criterion o (X U {x'}), we can simply
update oXrkcp (D).

Suppose we let X' = XU{x'}. We can utilize the formula for inversion of block matrices,
[A B} . (A-BD'C)™" ~A"'B(D-CA'B)”"
C D -D'C(A-BD'C)™" (D-CcA'B)™" ’

and the matrix inversion lemma [54],
(A+BCD)'=A'—-A'B(C'+DA'B) ' DA™ (3.15)

34

to see that

-1 __ 6X @Xx’ -
®Xl B |:@x’X @x’ :|
-1 —1 1 -1 -1
X — X 1 Ix —UUx X x/ — Ux X b's
(Ox — OxxO5'Oux) Ox'Oxx (O — OxOx' Oxx)
~ | _o! _ i -1 B X i (3.16)
@x’ GX/X (®X @Xx’Gx/ @x’X> (Gx’ @x’XGX @XX/)
and

UI%ITKGP (x|D) =06, — @xX’@)_(}@X’x
= 0Zriap (XID) — OxxOx' Oxx (O — OxO%'Oxyr) ™ OuxOx' Oxx
+2 - OxxO%'Oxx (Ox — OwxOx'Oxx) O
- Gxx’ (Gx’ - @x’X@)_(19Xx’)_l @x’x-

Given that @;(1 can also be reused from the previous round and updated iteratively using
Equation 3.16, this means the variance can be computed more efficiently.

3.4.3 Sparse GP Approximation of XnTkgp

Another benefit of using YXnrkgp for approximating the EV-GP criterion is that, unlike >y,
the covariance matrices in the form of Xxrxgp are well-studied in GP literature (Section 2.3),
and methods of sparsifying the kernel matrix have been proposed (Subsection 2.3.2). Below,
we discuss how these methods can be used.

Given a set of labeled training data D = (X,y), we want to compute the posterior
variance YXnrtkap (X7|D). Let U be a set of inducing points which is representative of X.
In general, U does not have to be a subset of X, and therefore is not necessarily a valid
candidate for the active set. For simplicity, we will apply the Fully-Independent Conditional
(FIC) approximation, where we assume that y and y7 are conditionally independent given
u:= f(U):

p(yrly) = / p(yrlu,y) p(uly) du ~ / p (yr|w) p (uly) du

We assume that p (u]y) ~ ¢ (u) and the goal is to compute the distribution ¢ (u) such that
Dgrlg (u)||p (u]y)] is minimised.

Assume that ¢ (u) is a normal distribution, i.e., u N (uu, Xu) where the mean and
the covariance function are dependent of our choice of set X. Then, minimizers, py and Xy,
of the KL divergence also maximise the expected lower bound (ELBO) [24]:

L(g) = / 7(u) [/ q<f|u>1og%df du—Dirlg(w)[p(w)] (3.17)

where f is the underlying (latent) function, i.e., the noiseless version of y.

35

In order to compute the distribution ¢ (u) which maximises L, we can compute its gra-
dient. In this case the gradient has a nice closed form:

oL

S eyl Y [G(UX) ~ F (U)ol (3.18)
Ho (x,y)€D
oL ., 1., 1

where

G (U,x) = 05'0ully
F (U, X) = @ﬁl@UXF;l@xU@ﬁllLU
Fx - @x - ®xU@[_jl®Ux

We will also let Oy = O (Xy, Xy) and Oy = O (x, Xy). Using the closed form expres-
sion of the gradient, the optimal puy and Xy can be computed through gradient ascent or
by directly solving equations 0L/0uy = 0 and dL/0%y = 0.

Given the optimal pu{; and Xy, the sparse NTKGP approximation is given as

psntrGP (Y7|Y) = @TU@GIMB
Yontree (Yr|y) = O1 — GTU@I_jl@UT + @TU@ﬁlzB@ﬁl@UT

The approximate posterior can now be computed in O(m?) time, where m is the num-
ber of inducing points, instead of O(n?®). The equation can also be iteratively computed in
quadratic time if Equation 3.15 is used for matrix inversion.

From the decomposition in Equation 3.18 and Equation 3.19, we see that the FIC ap-
proximation is nice to use since it is possible to decompose the summation above based on
terms F'(U,x) and G (U,x) where both terms depend only on one element, independent
of the other elements in X. This is convenient when trying to add one element and see
what effect it has on the inducing points distribution. Using this fact, it is also possible to
apply a further linear approximation on the criterion which allows for even more efficient
computation.

3.4.4 Approximating Incremental Change in XnTkgp

Given the inducing point prior Yy (X) as computed in Subsection 3.4.3, we can theoretically
compute the approximate posterior Yontrap (X7|X U {x'}) when one point is added directly
using the same method. We propose a simple technique to incrementally update the value
of Xy (X U{x'}), and therefore Lontrap (X7|X U {x'}), when a small number of points are
added to the training set. The approximation technique is akin to the use of influence func-
tions [31].

36

When we add a single point to the training set, the ELBO (Equation 3.17) will only
change by a small amount. Let L' = L + AL be the new loss function after adding x’ into
the set X, and AL be the contribution specifically from the new element x’. Since L only
changes by an amount AL, we do not expect Yy to change by much. Let Yy (XU {x'}) =
Yu (X) + AXy (x5 X) where AYy (x/;X) is the change of the inducing prior after adding
the training point x’. We see that Yy (X U {x'}) and Yy (X) would be slightly different
from each other.

We find that the change in the inducing points posterior can be instead given by

0L L ro(AL
AYy (x;X) ~ — <@|EEU(X)) ((82)\EEU(X)) (3.20)

Conveniently, the FIC approximation gives rise to a loss function whose gradient is easily
decomposable. We can write the derivative of the loss function contribution from x’ as

0(AL) 1
s = —5F (U.a) (3.21)

We also see that the Hessian of the original loss is equal to the Jacobian of the matrix

inverse, i.e.
PL 0 (1.,
@—a—z(éz > (322)

which can easily be computed in closed form and also using any auto-differentiation package.
Expressions from Equation 3.21 and Equation 3.22 can be plugged back into Equation 3.20
to obtain the change of ¥y when one new sample is added.

Therefore, any criterion a@ we have which would depend on the approximation of the
sNTKGP can be approximated as

Oa
Aa (x'; X) ~ <—, AYy (x'; X)>
Xy
This expression can be used to compute the change in the active learning criterion when an
additional data point is added. Because this term is based on the inner product of some ma-
trix quantities, it is parallelizable and in practice speeds up the algorithm by a large amount.

Experimentally, the Hessian can be expensive to compute. In order to speed up the
computation, we can instead use an alternate parametrization of the sparse GP called the
natural parameters which defines parameters to match more naturally to the terms that
appears in the Gaussian distribution. We refer the readers to [24] for further details on
this.

37

3.4.5 Other Criterions

Variance Percentile

Another possible way to use o ryqp for creating an AL criterion is use the rth percentile of
variance in the test points, i.e.

ay (X;r) = —percentile ({oXrxgp (X|D) : x € Xr},7) .

In this case, letting » = 50 is equivalent to considering the median of test output variance,
and letting » = 100 is equivalent to considering the maximum test output variance. Unfortu-
nately, the percentile function is not submodular in general, and therefore has no theoretical
guarantees when points are selected using the greedy algorithm.

Mutual Information Criterion

The criteria discussed thus far often do not take into account the distribution of X,. Through
the lens of information theory, we can view the active learning problem as attempting to
select points X with outputs y such that the most information can be obtained about yr.
As in [33], we can attempt to maximise the mutual information

onat (Xz) =1 [yLiyr)
=H [yT\L} —H [YT\L|YL]

1 1
= 5 log det (ZNTKGP (XT\L)) — 5 log det (ZNTKGP (XT\L|D)) + constant,

where we use the shorthand X7, = X \ X. We are able to arrive at the final line since
we know the predictive covariance follows a multivariate Gaussian distribution.

In the case that the test set and the unlabeled pool are disjoint, we have ypr\; = yr,
which means H [yT\ L] is a constant regardless of which active set we choose. In this case,
maximising ayr is equivalent to minimising H [yr|y].

A particular issue with using the mutual information is the numerical stability when com-
puting the entropy values. In particular, ayg involves computing the entropy H [yT\ L|yL},
which involves computing the determinant det Xnn (XT\ L|D). However, when the test set
Xp\r, have points which are highly correlated with each other, the matrix Yny (XT\ L|D)
may be singular and cause the determinant to be undefined.

Notice that the decision of using X\, instead of X7 will already alleviate some of
the issues regarding singular matrices. However, in order to prevent further issues, in our
experiments, we decide to pre-filter the points that are used for the test set. In particular,
instead of using all points from the test set, we select only a subset of training points such
that H [y7] is maximised. This means that the subset selected will be as independent from
each other as possible. Furthermore, using a subset of points instead of the full test set also
reduces the matrix size, which speeds up our computation as well. The subset of points that

38

are selected are done so using the K-Means++ initialization method. Furthermore, to avoid
computing the determinant of a singular matrix, we add in a diagonal noise term in order
to compute the determinant of Xny (XT\ L\D) + 021 instead. This corresponds to the case
where the observation has some added noise with variance o2.

3.5 AL Algorithm

Algorithm 1 EV-GP
Input: Initial labeled data (Xy,yo), unlabeled pool X, batch size b
(X, yL) < (X0, ¥0)
repeat
for b iterations do
T¥ 4 argmax,.x\x, opv (Xz U{z})
X+ X, U {[E*}
end for
Query the unlabeled points in X, for the labels y,
until budget exhausted
return (X;,yz)

We propose a greedy approach, which is guaranteed to give a (1 — l)—optimal solution

[46], and leave the use of other more sophisticated submodular optimiziation techniques to
future works. The greedy algorithm requires O (nk) criterion computations, where n is the
size of the unlabeled pool and k is the AL budget, which can be slow. There is a large lit-
erature on efficient submodular maximization algorithms with cardinality constraints. This,
however, is not the focus of our work. Nonetheless, for practical purposes, we propose two

simple optimization techniques.

1. The first optimization technique is based on the Accelerated-Greedy algorithm [40].
For each element in the unlabeled data pool, we store the marginal gain value,

Ax (X) = QEV (X U {X}) — RV (X) s

for some X that was previously active. Then, as the greedy algorithm proceeds, we
will continue to grow the active set into some X’ D X. From submodularity, we
know that Ay (X) > A, (X’). This means that in a particular round with active
set X', if we already have computed the marginal gain, Ay (X'), for some x’, and
Ay (X') > Ax (X), then there is no point in computing with x since

Ase (X) 2 Ay (X) 2 A (X)
= ORV (X/ U {X/}) Z (03 0)\Y4 (X/ U {X}) .

However, when we use the empirical NTK in our experiments, we reinitialize the neural

39

network after each batch of AL which changes the empirical NTK, and hence, we need
to recompute the criterion values.

. Another optimization technique is the Stochastic-Greedy algorithm [41], where we cal-
culate the criterion for a random subset of points, Xz C Xy in each round. This
technique is able to achieve accuracy arbitrarily close to 1 — 1/e in O (n) time (inde-
pendent of k).

40

Chapter 4

Experiments

Although the theoretical properties of Yy and YXnTkgp are applicable to infinite-width
neural networks, we follow the practice of previous works on NTKs [21, 42] and use finite-
width neural networks, since are able to achieve good performances. In our experiments,
we test our algorithm using both the theoretical NTKs, computed using the Jax-based [6]
Neural-Tangents package [48], and the empirical NTK computed using PyTorch. We will
use EV-GP-Emp to denote instances when we use the empirical NTK for our algorithm.

We compare our algorithm with previous baselines which require minimal model train-
ing between different batches and do not incur significant extra computations — random
selection, K-Means++ [3], BADGE [4] and MLMOC [42] algorithms. The former two, like
EV-GP, can select all the points in a single batch, but the latter two are not designed for
such a setting, and need modification for this purpose.

When reporting the output variance or performance metrics, we train a neural network 50
times for regression tasks and 25 times for classification tasks with the same architecture but
with different model initializations. All experiments are repeated 5 times (unless stated oth-
erwise) and the mean and standard deviations of the above-mentioned scores are reported.
We adopt the MSE loss Equation 2.9 for regression experiments and the cross-entropy loss
for classification experiments, which is consistent with previous works on NTK [60].

Some experimental details, as well as descriptions of the datasets and the algorithms,
have been deferred to the appendix.

4.1 Points Chosen by EV-GP

In this section, we explore the attributes of the active set selected using the EV-GP criterion.
From Figure 4.1, we see that the output variance with respect to model initialization is
heteroscedastic. This means that some inputs have more varied model prediction than
others. Unlike other coreset methods, Algorithm 1 does not necessarily pick points which
evenly cover the whole input space, but instead prioritizes points from regions with high
predictive variance, and balances the active set with points from dense regions.

41

Figure 4.1: Visualization of points selected by Algorithm 1. The black points represent images in
the Handwritten Digits dataset projected onto 2 dimensions using t-SNE. The contours represent
the predictive standard deviation computed empirically using the model output at initialization.
The crosses represent the points selected by the algorithm.

4.2 Correlation Between oXprqp and Output Variance

Robot Kinematics Protein
3 3
506 §°
© ©
> >6
§0.4 é
> s S 4
o g o
oz g S,
= SP=0.893 | SP=0.902 SP=0.868
Eoo PE=0.88 Eol # PE=0.96 » PE=0.96
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0 5 100 15 20 0 5 10 15 20
NTKGP variance sNTKGP variance NTKGP variance sNTKGP variance
Naval Handwritten Digits
v 1.0) 3
5 5
508 y &
> y y >4
50.6 -7 V4 5
i=3 # # 7 2
304) Z) Z = 3,
g g : ¢ : g
£0.2 =% 7z =
3 P i@ SP=0.846 P ffé SP=0.845 = SP=0.881 SP=0.874
£ 0.0 j.fk : PE=0.96 ;p’k : PE=0.96 £ ol # PE=0.97 » PE=0.97
0 1 2 0 1 2 0 5 10 0 5 10
NTKGP variance sNTKGP variance NTKGP variance sNTKGP variance

Figure 4.2: The empirical variance (with respect to random network initialization) against the
approximate prediction variance UIQ\ITKGP /SNTKGP" SP refers to the Spearman rank correlation
coeflicient and PE refers to the Pearson correlation coefficient.

Here we study whether our approximate output variance o&rxqp (Section 3.1) can accu-
rately capture the output variance of neural networks (w.r.t. the random initializations),

42

and hence, the initialization robustness. Figure 4.2 verifies that o&1xqp is highly correlated
with the observed output variance of the neural network and the variances are generally
confined within some region, which provides an empirical corroboration for Theorem 3.2.
This justifies our choice of using o&rkgp to measure the output variance w.r.t. model ini-
tialization, and hence, initialization robustness. Additionally, we see that 02¢rap, Which is
more computationally efficient (Subsection 3.4.3), is also highly correlated with the observed
output variance, albeit lower than its full-rank counterpart.

4.3 Experiments on Regression Tasks

Here, we evaluate our EV-GP criterion (Section 3.4) on regression tasks. In the experiments
here, each algorithm is given an unlabeled pool of data and no initial labeled data, and all
methods use a 2-layer MLP with ReLU activation. When reporting the EV-GP criterion
values, we will ignore the 0%y (x|¢) terms and instead report the average —ody (x|D).

4.3.1 Sequential Data Selection

Robot Kinematics Protein

o
o

[0}
g —e— EV 0.7 —e— EV § —e— EV 1.0 —e— EV
g }- Random l }+ Random % }- Random - Random
o M >
2 W 0.6 204 [008
a = a =
3 Zos 3 g
o e 202 F
IS 3 { 0.6
£ 0.4 £ Hhga0s
o Y. °’0.0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Selection points Selection points Selection points Selection points
Boston Handwritten Digits (Regression)
(] 0.6 [}
gv —e— EV 1.0 —e— EV 203 —— EV —e— EV
205 }- Random ' - Random % f- Random 07 }- Random
>
s 0.8 =02 bl
4% 0.6 > .
S0
0.4 3 0.5
0.1
£
0.2 S 0.4
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Selection points Selection points Selection points Selection points

Figure 4.3: The 90*" percentile of prediction variance and the test loss against the size of the
active set in a sequential data selection setting.

In Figure 4.3, our EV-GP criterion is used to sequentially select the data points (i.e. the
batch size, k, is 1). The left plot for each dataset shows that sequentially maximizing our
EV-GP criterion indeed leads to the selection points which progressively reduce the output
variance, and our AL algorithm consistently outperforms a random selection strategy. The
right plot shows that the points selected by maximizing the EV-GP criterion also sequentially
reduce the test MSE and hence improve the predictive performance of the neural network.

43

Figure 4.3 provides an empirical justification for Theorem 3.4, which theoretically showed
that minimizing the approximate output variance ontkgp (which is achieved by maximizing
our EV-GP criterion) also improves the generalization performance of overparameterized
neural networks.

4.3.2 Batched Data Selection

o
o

Robot Kinematics Protein
) o 1.50
§ 2 1.75
= 21.25
> 0.8 T g 1.50
5 | @ = 1.00 I
g | z g Z125
> % 5 + 1.
7 %]
Sos & S k] &
2 X0.50 1.00
£ 5
S04 i So2s 075
25 50 75 100 25 50 75 100 50 100 50 100
Selection points Selection points Selection points Selection points
Boston Naval
1.0 0.8
1.25 1.0
1.00
0.8 0.6 é
= 0.8
%]
@

Test MSE

:

90th %ile output variance

90th %ile output variance
o
~
w

0.4 |
0.50 ¢
0.4 '/./‘\,_/.4 0.6
0.25 0.2
20 40 20 40 25 50 75 100 25 50 75 100
Selection points Selection points Selection points Selection points
—e— EV-GP (ours) K-Means++ —%— Random

Figure 4.4: The 90" percentile of prediction variance and the test loss against the size of the
active set in a batch data selection setting.?

We also tested our EV-GP criterion in the more practical AL setting where a batch of points
(here, 20) are selected in every round. Figure 4.4 shows that in the batch setting, our EV-GP
criterion is still able select batches of points which lead to both low output variance (left
column) and small test error (right column), and outperforms the other baselines.

4.3.3 Evidence for Theorem 3.4

Figure 4.5 shows that an easier regression task leads to a larger degree of correlation between
the output variance and the test error. This is consistent with Theorem 3.4 which suggests
that an easier task (or, a simpler groundtruth function), indicated by a smaller B, implies
a low value of (, increasing the degree of correlation between the output variance and the
generalization error. We note that even in tasks exhibiting low correlation between EV-GP
and MSE loss, Algorithm 1 is effective (Figure 4.4).

2We omit BADGE and MLMOC algorithms from this experiment since they are not designed for regression
tasks.

44

0.6 Proteing
[]

b

5 0.5

c

5

S 0.4 []
@ Robot Kinematicse
©

3.1. 0.3 1

o Bostone e

8 0.2 1

©

g °

E‘ 0-11)

wi ..

0.0 1 @Random Model

-09 -08 -07 -0.6 -05 -04 -03
Pearson correlation between EV criteria and mean loss

Figure 4.5: The empirical bias (defined as the average MSE loss minus the output variance) against
the correlation of EV-GP with the MSE loss. Note that EV-GP is higher when the output variance
and the MSE loss are lower, which is why the correlation values on the z-axis are negative.

4.3.4 Sparse Approximations

Robot Kinematics Protein Boston
0 0.675])
g —e— EV-GP g —e— EV-GP 2 0.30 —e— EV-GP
£0.5 —e- EV-sGP g 0.6 ~-e- EV-sGP % —-e- EV-sGP
g 04 —e- EV-SGP+LA z ®- EV-sGP+LA 2025 o~ EV-sGP+LA
é_ ’ Random 204 -~ Random 2 - Random
303 3 5020 %
o 202 2
302 S 3015
c =
£o1 £00 S0.10
(<)) (<)) o
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Selection points Selection points Selection points

90th %ile output variance

o
N]

o
-

o
o

Naval
—e— EV-GP
0.4 —e- EV-sGP
®- EV-sGP+LA
0.3 -} Random

0 5 10 15 20
Selection points

Figure 4.6: The 90" percentile of prediction variance in a sequential data selection setting using

different approximations of oNTKGP-

Robot Kinematics Boston

[} o 1.50

% 0.8 1.0 %

ot = 1.25

°0.7 " g

5 0.8 5

306 g 100

3 + =)

3 7 ©0.75

0.5 2

% 0.6 % 0.50

£ 04 s

03 S0.25

25 50 75 100 25 50 75 100 20 40
Selection points Selection points Selection points
—e— EV-GP EV-sGP+LA -~ Random

--#- EV-sGP —¥— EV-GP-Emp

Test MSE

20 40
Selection points

Figure 4.7: The 90" percentile of prediction variance and mean test loss in a batched data selection

setting using different approximations of onTKGP-

45

In Figure 4.6 and Figure 4.7, we present the results for various approximation methods of
the NTKGP — approximating the NTK empirically, and approximating the covariance using
sparse GP techniques (as introduced in Subsection 3.4.3). We can see that the empirical
approximation of the NTK sees a drop in performance compared to the theoretical NTK.
However, it still provides a useful enough approximation for our purposes. Moreover, we
can see that the SNTKGP approximation provides a useful approximation for the criterion
as well. Applying a further linear approximation, however, to the SNTKGP computation
worsens the selection process. This suggests that the covariance function from the sSNTKGP
may not be smooth enough for a linear approximation method to be precise.

4.3.5 Other Criteria

Robot Kinematics Protein
] 0.9 g 1.50
c c 1.75
208 08 21.25
2 07 Wy 2 w 1.50
§- . 2 . 5_1.00 2 Las
20.6 0 3 0
5 Bos 80.75 & |
3 0. 3 1.00
£ 0.5 . ¥ 050
=] .5 =
0.4
g 8 0.25 0.75
25 50 75 100 25 50 75 100 50 100 50 100
Selection points Selection points Selection points Selection points
Boston Naval
3 3
€125 1.0 5 1.0
% go8 '
: 1.00 w 0.8 z w
> %) > wn
g = gos =
8 0.75 o 06 8 o 0.8
P e P ©
<050 304
s 0.4 £ 0.6
f0.25 . &0.2
20 40 20 40 25 50 75 100 25 50 75 100
Selection points Selection points Selection points Selection points
—e— EV-GP 90V-GP —<— Random

—&— MI-GP —¥— 100V-GP

Figure 4.8: Active learning on regression datasets with different criteria based on o&kap (Sub-
section 3.4.5).

Here, we show the results for experiments with other active learning criteria, as presented in
Subsection 3.4.5. In Figure 4.8 we show the results in the batch setting. We find that a;goyv
tends to perform poorly compared to the other criteria, and even worse than Random in some
instances. Since ajggy tends puts too much focus on reducing the variance of outliers, it does
not provide a diverse subset of points. Reducing this threshold to the 90" percentile (90V-
GP) is able to give a better subset, however, still not as effective as EV-GP. Meanwhile,
MI-GP often has good performance, sometimes even outperforming EV-GP. However, we
find it is still less preferable since its advantage over EV-GP is not consistent and also due
to the aforementioned issue of computational efficiency (Subsection 3.4.5).

46

4.4 Experiments on Classification Tasks

Here we use our EV-GP criterion for classification tasks. We use a wider variety of neural
network architectures, including multi-layer perceptron (MLP) networks with ReLLU activa-
tion, convolutional neural networks (CNNs) and WideResNet [72], as in [42].

4.4.1 Performance Comparison

(a) MNIST, 2-layer MLP (b) EMNIST, 3-layer MLP
> 1.6
go8 >.0.90 — e >,
5 9] s 0'0.5
S I S I
3 3
506 g o.8s 514 g
fhe © s ©0.4
3 7 3 il
o] o o]
2 2 0.80 212 i
X0.4 3 X 303
E 1 =0.75 5 =
o o 1.0
100 200 300 400 200 400 200 400 600 200 400 600
Selection points Selection points Selection points Selection points

—e— EV-GP (ours) —v— BADGE —<— Random
K-Means++ —&— MLMOC

Figure 4.9: Output entropy and mean test accuracy in classification experiments using MLP
networks.

EMNIST, 2-layer CNN SVHN, WideResNet
> > 0.40
g g
516 go.e 518 g0.35
2 g 5 3030
314 205 3te gv
3 ki 31,4 £0.25
212 04 2 c
S e 2 5 0.20
£ 2 g2 1 <
gt 03 S 0.15
200 400 600 200 400 600 200 400 600 800 250 500 750
Selection points Selection points Selection points Selection points
CIFAR100, WideResNet CIFAR100, WideResNet
Batch Size 200, Budget 800 Batch Size 500, Budget 2,000
> > 0.40
g > s
516 g 0.6 5181 2035
2 g 2 3030
é_ 1.4 205 §_1.6 g0
3 + =} -
o 4 ° 0 0.25
1.2 % 0.4 ola fi
s g 2 §020
< s < l.z21]
£10 03 8 =015
200 400 600 200 400 600 200 400 600 800 250 500 750
Selection points Selection points Selection points Selection points

—e— EV-GP-Emp (ours) —v— BADGE —%— Random
K-Means++ #- MLMOC

Figure 4.10: Output entropy and mean test accuracy in classification experiments using CNNs.

47

Figure 4.9 presents the comparison of our EV-GP criterion with other baselines, in which
all methods use MLPs. The figures show that our EV-GP criterion is indeed able to select
points which lead to both initialization robustness (i.e., low output entropy plotted in the
first column) and good generalization performances (i.e., high test accuracy shown in the
second column). The results are consistent with those for the regression tasks (Section 4.3).
Moreover, our EV-GP criterion outperforms the other baselines, especially in the earlier
rounds when there is a small number of selected points. Figure 4.10 plots the results using
more sophisticated neural network architectures (i.e., CNNs and WideResNets), in which
our EV-GP criterion also consistently outperforms the other baselines in terms of the test
accuracy.

4.4.2 Effect of Batch Size

MNIST, 2-layer MLP EMNIST, 2-layer MLP

- 0.925 >1.4
g . g . '%'
E 0.6 § 0.900 .E 1.3 E 0.55
o S o S
o) o = (9]
305 & 0-875 312 % 0.50
3 = 3 +
g ¢ 0.850 o g
204 = 211 €045
xX © xX ©
M 0 0.825 M (]
S = £1.0 =
503 ERS
o 0.800) 0.40

100 200 300 400 200 400 200 400 600 800 250 500 750

Batch size Batch size Batch size Batch size
SVHN, WideResNet EMNIST, 2-layer CNN
2 0.40 2 07y
g 1.85 > | g 16 > ¥
S e S Cos6
©1.80 30.35 . 3
=L g0 4 514 9
I @ I 15
3175 i 315 g0
Q 0.30] Q =
X170 g X S 0.4
£ = 10w o =
& 1.65 0.25 & ——9 @
250 500 750 250 500 750 200 400 600 800 200 400 600 800
Batch size Batch size Batch size Batch size

—e— EV-GP-Emp (ours) —v— BADGE —&— MLMOC
Figure 4.11: Results on classification tasks with varying batch sizes.

Here we examine the impact of the batch size on the performances of different AL algorithms,
by fixing the total query budget and varying the batch size. The results in Figure 4.11 show
that EV-GP-Emp (which uses the empirical NTK) is minimally affected by increasing batch
size®. This is reasonable since EV-GP-Emp does not require labels. Therefore, batch size
has no effect on the performance. In contrast, when the batch size is increased, MLMOC
experiences a large drop in performance for both datasets and the performance of BADGE
is significantly decreased for MNIST. This may be mainly attributed to their reliance on the

3We omit Random, K-Means++ and EV-GP from the graph since the selection algorithm is independent
of batch size.

48

labels, because a larger batch size reduces the frequency of the availability of, and hence
their abilities to use, labels. Moreover, another factor which causes the detrimental effect of
a larger batch size on MLMOC is that a larger batch size is likely to reduce the diversity of
the selected points [42].

4.4.3 Effect of Network Width

MNIST, 3-layer MLP

o
0.7 ©
. *—X\”___—i— ;zg 5 0.915
s -4 512 9 *- 128
< 0.6 & 1024 E 256
o 7 -4 512
Sos \/4—‘ £0.9101 —#— 1024
=2 c
° ©
<]
E =
g 0.905 1
@
o
g, /\/
£
0.900 +

200 400 600 800 1000

200 400 600 800 1000 ;
Network width for AL Network width for AL

Figure 4.12: Performances of our EV-GP-Emp with varying network widths for data selection
(z-axis) and network training (different plots).

Here we investigate how the width of the network affects the performance of our EV-GP-Emp
algorithm, by changing the widths of both, the network used for data selection (i.e., for cal-
culating our EV-GP criterion) and the one used for training. The left column in Figure 4.12
shows that increasing the width of either of the networks improves initialization robustness.
This is because a wider network for both data selection and training can reduce the approx-
imation error in using o%rxqp and therefore, improve the accuracy of approximation for our
EV-GP criterion. As a result, this leads to more accurate data selection and hence better
initialization robustness. The right column shows that increasing the width of the network
for training improves test accuracy, which can be attributed to the better expressivity of
wider networks. However, increasing the width of the network used for data selection does
not have a significant impact on the test accuracy. This suggests that the network does not
need to be extremely wide in order to select a good active set that leads to good predictive
performance of the trained network.

49

Chapter 5

Conclusion

We have introduced a computationally efficient and theoretically grounded criterion for neu-
ral active learning, which can lead to the selection of points that result in both initialization
robustness and good generalization performances. Extensive empirical results have shown
that our criterion is highly correlated to both the initialization robustness and generalization
error, and that it consistently outperforms existing baselines. An interesting future direction
is to incorporate our algorithm to select the initial points for other neural active learning
algorithms to further enhance their performances, because our algorithm has shown impres-
sive performances in scenarios with limited initial labeled data. Moreover, our theoretical
analysis was limited to MSE loss. Since our algorithm performs well with cross-entropy loss
as well (demonstrated in Section 4.4), future works can try to prove the theorems for it.
Finally, our proposed criteria is quite simple, and other AL criteria can also be constructed
and studied using the output variance as modeled by the NTK.

50

Bibliography

[1] Moloud Abdar et al. “A Review of Uncertainty Quantification in Deep Learning: Tech-
niques, Applications and Challenges”. In: Information Fusion 76 (Dec. 2021), pp. 243—
297. 1SSN: 15662535. DOI: 10.1016/j.inffus.2021.05.008. arXiv: 2011.06225 [cs].

[2] Sanjeev Arora et al. “On Exact Computation with an Infinitely Wide Neural Net”. In:
arXiv:1904.11955 [cs, stat] (Nov. 2019). arXiv: 1904.11955 [cs, stat].

[3] David Arthur and Sergei Vassilvitskii. “K-Means++: The Advantages of Careful Seed-
ing”. In: (), p. 11.

[4] Jordan T. Ash et al. “Deep Batch Active Learning by Diverse, Uncertain Gradient
Lower Bounds”. In: arXiv:1906.03671 [cs, stat] (Feb. 2020). arXiv: 1906.03671 [cs,
stat].

[5] Shai Ben-David et al. “A Theory of Learning from Different Domains”. In: Machine
Learning 79.1-2 (May 2010), pp. 151-175. 1SSN: 0885-6125, 1573-0565. DO1: 10.1007/
5$10994-009-5152-4.

[6] James Bradbury et al. JAX: Composable Transformations of Python+NumPy Pro-
grams. 2018.

[7] John Bridle. “Training Stochastic Model Recognition Algorithms as Networks can Lead
to Maximum Mutual Information Estimation of Parameters”. In: Advances in Neu-
ral Information Processing Systems. Ed. by D. Touretzky. Vol. 2. Morgan-Kaufmann,
1989. URL: https://proceedings.neurips.cc/paper_files/paper/1989/file/
0336dcbab05b9d5ad24£4333¢c7658a0e-Paper . pdf.

[8] Davide Cacciarelli and Murat Kulahci. A survey on online active learning. 2023. arXiv:
2302.08893 [stat.ML].

[9] Rita Chattopadhyay et al. “Batch Mode Active Sampling Based on Marginal Prob-
ability Distribution Matching”. In: KDD : proceedings / International Conference on
Knowledge Discovery € Data Mining. International Conference on Knowledge Dis-
covery € Data Mining 2012 (2012), pp. 741-749. 1ssN: 2154-817X. por: 10. 1145/
2339530.2339647.

[10] Sayak Ray Chowdhury and Aditya Gopalan. “On kernelized multi-armed bandits”. In:
Proc. ICML. 2017, pp. 844-853.

[11] Gregory Cohen et al. EMNIST: an extension of MNIST to handwritten letters. arXiv:1702.05373
[cs]. Mar. 2017. URL: http://arxiv.org/abs/1702.05373 (visited on 01/26,/2023).

51

https://doi.org/10.1016/j.inffus.2021.05.008
https://arxiv.org/abs/2011.06225
https://arxiv.org/abs/1904.11955
https://arxiv.org/abs/1906.03671
https://arxiv.org/abs/1906.03671
https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1007/s10994-009-5152-4
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://arxiv.org/abs/2302.08893
https://doi.org/10.1145/2339530.2339647
https://doi.org/10.1145/2339530.2339647
http://arxiv.org/abs/1702.05373

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Eric C. Cyr et al. Robust Training and Initialization of Deep Neural Networks: An
Adaptive Basis Viewpoint. Dec. 2019. arXiv: 1912.04862 [cs, math, stat].

Amit Daniely, Roy Frostig, and Yoram Singer. “Toward Deeper Understanding of
Neural Networks: The Power of Initialization and a Dual View on Expressivity”. In:
Advances in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29.
Curran Associates, Inc., 2016. URL: https : //proceedings . neurips . cc/ paper _
files/paper/2016/file/abead7ba24142ed16b7d8fbf2c740e0d-Paper . pdf.

Li Deng. “The MNIST Database of Handwritten Digit Images for Machine Learning
Research”. In: IEEFE Signal Processing Magazine 29.6 (2012), pp. 141-142.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository. https://archive.ics.uci

Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning”. In: arXiw:1500.02142 [cs, stat] (Oct.
2016). arXiv: 1506.02142 [cs, stat].

Daniel Gissin and Shai Shalev-Shwartz. Discriminative Active Learning. July 2019.
arXiv: 1907.06347 [cs, stat].

Xavier Glorot and Yoshua Bengio. “Understanding the Difficulty of Training Deep
Feedforward Neural Networks”. In: Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Pro-
ceedings, Mar. 2010, pp. 249-256.

Arthur Gretton et al. “A Kernel Two-Sample Test”. In: Journal of Machine Learning
Research 13.25 (2012), pp. 723-773. 1sSN: 1533-7928.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. Fzact Convergence Rates of
the Neural Tangent Kernel in the Large Depth Limit. May 2022. arXiv: 1905 . 13654
[cs, stat].

Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. “Bayesian Deep Ensembles
via the Neural Tangent Kernel”. In: arXiv:2007.05864 [cs, stat] (Oct. 2020). arXiv:
2007.05864 [cs, stat].

Kaiming He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. Feb. 2015. arXiv: 1502.01852 [cs].

Tao He et al. “Towards Better Uncertainty Sampling: Active Learning with Multiple
Views for Deep Convolutional Neural Network”. In: 2019 IEEE International Confer-
ence on Multimedia and Expo (ICME). Shanghai, China: IEEE, July 2019, pp. 1360—
1365. 1sBN: 978-1-5386-9552-4. DOI: 10.1109/ICME.2019.00236.

Trong Nghia Hoang, Quang Minh Hoang, and Bryan Kian Hsiang Low. “A Unifying
Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic
Variational Inference for Big Data”. In: Proceedings of the 32nd International Confer-
ence on Machine Learning. PMLR, June 2015, pp. 569-578.

Neil Houlsby et al. Bayesian Active Learning for Classification and Preference Learn-
ing. Dec. 2011. arXiv: 1112.5745 [cs, stat].

52

.edu/ml.

https://arxiv.org/abs/1912.04862
https://proceedings.neurips.cc/paper_files/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1907.06347
https://arxiv.org/abs/1905.13654
https://arxiv.org/abs/1905.13654
https://arxiv.org/abs/2007.05864
https://arxiv.org/abs/1502.01852
https://doi.org/10.1109/ICME.2019.00236
https://arxiv.org/abs/1112.5745

[31]

[32]

Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Conver-
gence and Generalization in Neural Networks”. In: arXiv:1806.07572 [cs, math, stat]
(Feb. 2020). arXiv: 1806.07572 [cs, math, stat].

Parnian Kassraie and Andreas Krause. “Neural Contextual Bandits without Regret”.
In: Proceedings of The 25th International Conference on Artificial Intelligence and
Statistics. PMLR, May 2022, pp. 240-278.

Kwanyoung Kim et al. Task-Aware Variational Adversarial Active Learning. Dec. 2020.
arXiv: 2002.04709 [cs, stat].

Andreas Kirsch, Tom Rainforth, and Yarin Gal. Test Distribution-Aware Active Learn-
ing: A Principled Approach Against Distribution Shift and Qutliers. Nov. 2021. arXiv:
2106.11719 [cs, stat].

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. “BatchBALD: Efficient and
Diverse Batch Acquisition for Deep Bayesian Active Learning”. In: arXiv:1906.08158
[es, stat] (Oct. 2019). arXiv: 1906.08158 [cs, stat].

Pang Wei Koh and Percy Liang. “Understanding Black-box Predictions via Influ-
ence Functions”. In: arXiv:1705.04730 [cs, stat] (Dec. 2020). arXiv: 1703.04730 [cs,
stat].

Andreas Krause and Carlos Guestrin. “Nonmyopic Active Learning of Gaussian Pro-
cesses: An Exploration-Exploitation Approach”. In: Proceedings of the 24th Interna-
tional Conference on Machine Learning. ICML ’07. New York, NY, USA: Associa-
tion for Computing Machinery, June 2007, pp. 449-456. ISBN: 978-1-59593-793-3. DOI:
10.1145/1273496.1273553.

Andreas Krause, Ajit Singh, and Carlos Guestrin. “Near-Optimal Sensor Placements
in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies”. In: The
Journal of Machine Learning Research 9 (June 2008), pp. 235-284. 1SSN: 1532-4435.

Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. en. In: ().

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and Scal-
able Predictive Uncertainty Estimation Using Deep Ensembles”. In: arXiv:1612.01474
[es, stat] (Nov. 2017). arXiv: 1612.01474 [cs, stat].

Jaehoon Lee et al. “Wide Neural Networks of Any Depth Evolve as Linear Models
Under Gradient Descent”. In: Journal of Statistical Mechanics: Theory and Experiment
2020.12 (Dec. 2020), p. 124002. 1SSN: 1742-5468. DOI: 10.1088/1742-5468/abc62b.
arXiv: 1902.06720.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. On the Linearity of Large Non-Linear
Models: When and Why the Tangent Kernel Is Constant. Feb. 2021. arXiv: 2010.01092
[cs, stat].

David J. C. MacKay. “A Practical Bayesian Framework for Backpropagation Net-
works”. In: Neural Computation 4.3 (1992), pp. 448-472. DOI: 10.1162/neco.1992.
4.3.448.

53

https://arxiv.org/abs/1806.07572
https://arxiv.org/abs/2002.04709
https://arxiv.org/abs/2106.11719
https://arxiv.org/abs/1906.08158
https://arxiv.org/abs/1703.04730
https://arxiv.org/abs/1703.04730
https://doi.org/10.1145/1273496.1273553
https://arxiv.org/abs/1612.01474
https://doi.org/10.1088/1742-5468/abc62b
https://arxiv.org/abs/1902.06720
https://arxiv.org/abs/2010.01092
https://arxiv.org/abs/2010.01092
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448

[39]

[40]

[41]

[42]

[47]
[48]
[49]
[50]

[51]

David J. C. MacKay. “The Evidence Framework Applied to Classification Networks”.
In: Neural Computation 4.5 (Sept. 1992), pp. 720-736. 1SSN: 0899-7667, 1530-888X.
DOI: 10.1162/neco0.1992.4.5.720.

Michel Minoux. “Accelerated greedy algorithms for maximizing submodular set func-
tions”. In: Optimization Techniques. Ed. by J. Stoer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1978, pp. 234-243. 1SBN: 978-3-540-35890-9.

Baharan Mirzasoleiman et al. Lazier Than Lazy Greedy. arXiv:1409.7938 [cs|. Nov.
2014. URL: http://arxiv.org/abs/1409.7938 (visited on 01/25/2023).

Mohamad Amin Mohamadi, Wonho Bae, and Danica J. Sutherland. “Making Look-
Ahead Active Learning Strategies Feasible with Neural Tangent Kernels”. In: (2022).
DOI: 10.48550/arXiv.2206.12569. arXiv: 2206.12569 [cs, stat].

Brady Neal et al. A Modern Take on the Bias-Variance Tradeoff in Neural Networks.
Dec. 2019. arXiv: 1810.08591 [cs, stat].

Radford M Neal. Bayesian learning for neural networks. Vol. 118. Springer Science &
Business Media, 2012.

Radford M. Neal. Bayesian Learning for Neural Networks. Ed. by P. Bickel et al.
Vol. 118. Lecture Notes in Statistics. New York, NY: Springer New York, 1996. ISBN:
978-0-387-94724-2 978-1-4612-0745-0. DOI: 10.1007/978-1-4612-0745-0.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. “An Analysis of Approximations
for Maximizing Submodular Set Functions—I”. In: Mathematical Programming 14.1
(Dec. 1978), pp. 265-294. 1sSN: 0025-5610, 1436-4646. DO1: 10.1007/BF01588971.

Yuval Netzer et al. “Reading Digits in Natural Images with Unsupervised Feature
Learning”. en. In: ().

Roman Novak et al. Neural Tangents: Fast and FEasy Infinite Neural Networks in
Python. Dec. 2019. arXiv: 1912.02803 [cs, stat].

Tim Pearce, Alexandra Brintrup, and Jun Zhu. Understanding Softmax Confidence
and Uncertainty. 2021. arXiv: 2106.04972 [cs.LG].

Viraj Prabhu et al. Active Domain Adaptation via Clustering Uncertainty-weighted
Embeddings. Oct. 2021. arXiv: 2010.08666 [cs].

Joaquin Quinonero-Candela and Carl Edward Rasmussen. “A Unifying View of Sparse
Approximate Gaussian Process Regression”. In: Journal of Machine Learning Research
6.65 (2005), pp. 1939-1959. 1sSN: 1533-7928.

Hiranmayi Ranganathan et al. “Deep Active Learning for Image Classification”. In:
2017 IEEE International Conference on Image Processing (ICIP). Beijing: IEEE, Sept.
2017, pp. 3934-3938. 1sBN: 978-1-5090-2175-8. DOI: 10.1109/ICIP.2017.8297020.

Carl Edward Rasmussen and Joaquin Quinonero-Candela. “Healing the Relevance Vec-
tor Machine through Augmentation”. In: Proceedings of the 22nd International Con-
ference on Machine Learning. ICML ’05. Bonn, Germany: Association for Computing
Machinery, 2005, pp. 689-696. 1SBN: 1595931805. poOI: 10.1145/1102351.1102438.
URL: https://doi.org/10.1145/1102351.1102438.

o4

https://doi.org/10.1162/neco.1992.4.5.720
http://arxiv.org/abs/1409.7938
https://doi.org/10.48550/arXiv.2206.12569
https://arxiv.org/abs/2206.12569
https://arxiv.org/abs/1810.08591
https://doi.org/10.1007/978-1-4612-0745-0
https://doi.org/10.1007/BF01588971
https://arxiv.org/abs/1912.02803
https://arxiv.org/abs/2106.04972
https://arxiv.org/abs/2010.08666
https://doi.org/10.1109/ICIP.2017.8297020
https://doi.org/10.1145/1102351.1102438
https://doi.org/10.1145/1102351.1102438

[58]

[59]
[60]

[61]

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma-
chine Learning. Adaptive Computation and Machine Learning. Cambridge, Mass: MIT
Press, 2006. 1SBN: 978-0-262-18253-9.

Pengzhen Ren et al. “A Survey of Deep Active Learning”. In: arXiv:2009.00236 |cs,
stat] (Dec. 2021). arXiv: 2009.00236 [cs, stat].

Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017. arXiv:
1609.04747 [cs.LG].

Matthias W. Seeger, Christopher K. I. Williams, and Neil D. Lawrence. “Fast For-
ward Selection to Speed Up Sparse Gaussian Process Regression”. In: Proceedings
of the Ninth International Workshop on Artificial Intelligence and Statistics. Ed. by
Christopher M. Bishop and Brendan J. Frey. Vol. R4. Proceedings of Machine Learn-
ing Research. Reissued by PMLR on 01 April 2021. PMLR, Mar. 2003, pp. 254-261.
URL: https://proceedings.mlr.press/r4/seeger03a.html.

Ozan Sener and Silvio Savarese. “Active Learning for Convolutional Neural Networks:

A Core-Set Approach”. In: arXiv:1708.00489 [cs, stat] (June 2018). arXiv: 1708.00489
[cs, stat].

Burr Settles. Active Learning. Cham: Springer International Publishing, 2012. 1SBN:
978-3-031-00432-2 978-3-031-01560-1. DOI: 10.1007/978-3-031-01560-1.

Yao Shu et al. “NASI: LABEL- AND DATA-AGNOSTIC NEURAL ARCHITEC-
TURE SEARCH AT INITIALIZATION”. In: (2022), p. 25.

Changjian Shui et al. “Deep Active Learning: Unified and Principled Method for Query
and Training”. In: Proceedings of the Twenty Third International Conference on Arti-
ficial Intelligence and Statistics. PMLR, June 2020, pp. 1308-1318.

Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational Adversarial Active
Learning. Oct. 2019. arXiv: 1904.00370 [cs, stat].

Alex Smola and Peter Bartlett. “Sparse Greedy Gaussian Process Regression”. In:
Advances in Neural Information Processing Systems. Vol. 13. MIT Press, 2000.

Edward Snelson and Zoubin Ghahramani. “Local and Global Sparse Gaussian Process
Approximations”. In: Proceedings of the Eleventh International Conference on Artifi-
cial Intelligence and Statistics. PMLR, Mar. 2007, pp. 524-531.

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian Uncertainty Estimation
for Batch Normalized Deep Networks. July 2018. arXiv: 1802.06455 [stat].

Antonio Torralba, Rob Fergus, and William T. Freeman. “80 Million Tiny Images: A
Large Data Set for Nonparametric Object and Scene Recognition”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 30.11 (2008), pp. 1958-1970. pOI:
10.1109/TPAMI.2008.128.

Sattar Vakili et al. “Optimal Order Simple Regret for Gaussian Process Bandits”. In:
arXiv:2108.09262 [cs, stat] (Aug. 2021). arXiv: 2108.09262 [cs, stat].

Sattar Vakili et al. “Uniform Generalization Bounds for Overparameterized Neural Net-
works”. In: arXiv:2109.06099 [cs, stat] (Oct. 2021). arXiv: 2109.06099 [cs, stat].

%)

https://arxiv.org/abs/2009.00236
https://arxiv.org/abs/1609.04747
https://proceedings.mlr.press/r4/seeger03a.html
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1708.00489
https://doi.org/10.1007/978-3-031-01560-1
https://arxiv.org/abs/1904.00370
https://arxiv.org/abs/1802.06455
https://doi.org/10.1109/TPAMI.2008.128
https://arxiv.org/abs/2108.09262
https://arxiv.org/abs/2109.06099

[69]

Dan Wang and Yi Shang. “A New Active Labeling Method for Deep Learning”. In:
201/ International Joint Conference on Neural Networks (IJCNN). Beijing, China:
[EEE, July 2014, pp. 112-119. 1SBN: 978-1-4799-1484-5 978-1-4799-6627-1. DOI: 10.
1109/IJCNN.2014.6889457.

Zhilei Wang et al. “Neural Active Learning with Performance Guarantees”. In: Ad-
vances in Neural Information Processing Systems. Vol. 34. Curran Associates, Inc.,
2021, pp. 7510-7521.

Zhaoxuan Wu, Yao Shu, and Bryan Kian Hsiang Low. “DAVINZ: Data Valuation
Using Deep Neural Networks at Initialization”. In: Proceedings of the 39th International
Conference on Machine Learning. PMLR, June 2022, pp. 24150-24176.

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. June 14, 2017.
arXiv: 1605 .07146[cs]. URL: http://arxiv.org/abs/ 1605 . 07146 (visited on
01,/22,/2023).

Beichen Zhang et al. State-Relabeling Adversarial Active Learning. Apr. 2020. arXiv:
2004.04943 [cs].

56

https://doi.org/10.1109/IJCNN.2014.6889457
https://doi.org/10.1109/IJCNN.2014.6889457
https://arxiv.org/abs/1605.07146 [cs]
http://arxiv.org/abs/1605.07146
https://arxiv.org/abs/2004.04943

Appendix

57

Appendix A

Experimental Setup

A.1 Regression Experiments

We will use a combination of generated dataset and real-life data. Randomly generated data,
referred to as Random Model, is constructed by labeling random points in a ball using a
random model initialization.

Meanwhile the real-life training datasets are taken from the UCI Machine Learning Repos-
itory [15]. For all datasets, we split the whole data in half, and let one half be the pool of
unlabeled data and the other be the test data which the algorithm has no access to. All the
datasets used are regression datasets, with the exception of the Handwritten Digits dataset
which is a classification dataset, but we perform regression on the label value (i.e. for the
inputs corresponding to the digit n, we assign y = n, ¥n € {1,...,10}). All datasets are
also normalized such that they have mean 0 and variance of 1.

In all the regression experiments, the model used is a 2-layer multilayer perceptron (MLP)
with hidden layer widths 512 and with bias. We set oy = 1. and 0, = 0.1. The NNs are
optimized using gradient descent with step size 0.01.

A.2 Classification Experiments

For the classification experiments, in order to reduce the training time, we restrict the
unlabeled data pool to a random subset of the whole training set. For the MNIST dataset
(Section B.1), we randomly select 10,000 points and use it as our unlabeled pool, while for
the remaining classification experiments we randomly select 20, 000 points for the unlabeled
pool. All the inputs are also rescaled so that the input values are between [—1, 1]. For all the
models, we train the models using stochastic gradient descent with learning rate of 0.1 and
decay rate of 0.005. The models are trained with training batch size of 32 and are trained
for 100 epochs. Below, we provide a brief description of the datasets used and the model
architectures used for training on the corresponding datasets.

58

Appendix B

Datasets

B.1 MNIST

The Modified National Institute of Standards and Technology (MNIST) dataset [14] is a
widely-used collection of handwritten digit images, serving as a fundamental benchmark for
various machine learning and computer vision algorithms.

The dataset comprises a total of 70,000 grayscale images, with each image featuring a
single handwritten digit (0-9). The images are of size 28 x 28 pixels, with pixel values rang-
ing from 0 (black) to 255 (white). The dataset is divided into two subsets: a training set
containing 60, 000 images and a testing set consisting of 10,000 images.

MNIST images are derived from the original NIST dataset, which contains handwritten
digits from American Census Bureau employees and high school students. The MNIST
dataset is a cleaned and standardized version, with images centered and size-normalized to
fit within the 28 x 28 pixel grid. These preprocessing steps minimize variations and reduce
computational complexity, making the dataset suitable for machine learning tasks.

B.2 EMNIST

The Extended Modified National Institute of Standards and Technology (EMNIST) dataset
[11] is a more comprehensive collection of handwritten characters, building upon the original
MNIST dataset. It expands the scope of the widely-used MNIST dataset to include both
digits and alphabetic characters, thereby offering a more challenging benchmark for machine
learning and computer vision algorithms.

The EMNIST dataset consists of 814,255 images, each sized 28 x 28 pixels with pixel
values ranging from 0 (black) to 255 (white). These images contain handwritten digits (0-
9) and alphabetic characters (A-Z, a-z), sourced from the original NIST dataset’s Special
Database 19. The EMNIST dataset is split into six subsets, catering to different application
scenarios:

59

1. EMNIST ByClass: Comprising 62 classes (10 digits, 26 uppercase letters, and 26
lowercase letters), this set contains 814, 255 images, with 697,932 images for training
and 116, 323 images for testing.

2. EMNIST ByMerge: Featuring 47 classes, this set merges some uppercase and lowercase
letters with similar shapes.

3. EMNIST Balanced: Consisting of 47 classes, this set aims to balance the number of
images per class. The dataset contains 112, 800 images, with 94, 000 images (2, 000 per
class) designated for training and 18,800 images (400 per class) for testing.

4. EMNIST Letters: Containing 26 classes of uppercase and lowercase letters, this set
has 145,600 images, with 124, 800 images for training and 20, 800 images for testing.

5. EMNIST Digits: Similar to the original MNIST dataset, this set comprises 10 classes
of digits and consists of 280, 000 images, with 240, 000 images reserved for training and
40,000 images for testing.

6. EMNIST MNIST: A direct replacement for the original MNIST dataset, this set has
undergone the same preprocessing and balancing as the MNIST dataset, with 70, 000
images, 60,000 for training, and 10, 000 for testing.

B.3 SVHN

The Street View House Numbers (SVHN) dataset [47] is a large-scale, real-world dataset
of house number images, extracted from Google Street View images. The SVHN dataset
provides a complex and diverse benchmark for machine learning and computer vision algo-
rithms, particularly those focused on digit recognition and localization tasks.

The SVHN dataset comprises over 600,000 32 x 32 pixel color images of house numbers.
These images are collected from a wide variety of geographic locations and feature diverse
architectural styles, fonts, colors, and orientations. The dataset is divided into three subsets:

1. SVHN Train: Containing 73,257 images, this set is intended for training machine
learning algorithms.

2. SVHN Test: Comprising 26, 032 images, this set is used for evaluating the performance
of trained models on previously unseen data.

3. SVHN Extra: With 531, 131 images, this set provides additional, less difficult samples
that can be used for training or validation purposes.

Each image in the dataset is accompanied by a bounding box, which indicates the location
of the house number in the image, and a label that specifies the digit sequence. The images
in the SVHN dataset are more challenging than those in the MNIST or EMNIST datasets

due to factors such as variable lighting conditions, occlusions, and distortions.

60

B.4 CIFAR-100

The CIFAR-100 dataset [34] is a widely-used collection of color images, intended for object
recognition and classification tasks in the field of machine learning and computer vision. The
CIFAR-100 dataset serves as a more challenging benchmark compared to its counterpart, the
CIFAR-10 dataset, due to the increased number of classes and finer classification categories.

The CIFAR-100 dataset comprises 60, 000 color images, each of size 32 x 32 pixels. These
images are divided into 100 classes, representing different objects, animals, and scenes. Each
class contains 600 images, with 500 designated for training and the remaining 100 for test-
ing, resulting in a total of 50,000 training images and 10,000 testing images. The dataset
is further divided into 20 superclasses, with each superclass containing five related classes,
providing the opportunity to explore both coarse and fine-grained classification tasks.

Images in the CIFAR-100 dataset are sourced from the Tiny Images dataset [66], a col-
lection of 80 million small images obtained from the internet. The images in the CIFAR-100
dataset have been downsampled and preprocessed, which includes resizing, center-cropping,
and normalizing pixel values.

61

Appendix C

Active Learning Baselines

C.1 Random

In the random selection strategy for neural active learning, a predetermined number of un-
labeled samples are randomly selected from the pool of available data without considering
any specific criteria. It is a straightforward strategy that serves as a baseline for comparison
with other more sophisticated strategies.

Although the random selection strategy lacks the sophistication of other active learning
strategies, it offers some advantages:

1. Simplicity: The random selection strategy is easy to implement and requires minimal
computational overhead, making it suitable for cases where more complex strategies
are not feasible or as a baseline for comparison.

2. Unbiased: Random selection does not introduce any bias toward specific samples or
regions in the feature space, ensuring that the selected samples provide a fair repre-
sentation of the entire dataset.

3. Serendipity: In some cases, random selection may accidentally pick highly informative
samples that other strategies might overlook due to their focus on specific criteria.

Despite these advantages, the random selection strategy is generally considered less ef-
fective than other active learning strategies as it does not specifically target samples that
would provide the most significant improvement in the model’s performance. In most cases,
it is advisable to use more advanced strategies that can intelligently prioritize samples based
on their potential impact on the model’s learning.

C.2 K-Means+-+

K-means++ is an algorithm for choosing the initial centroids in the K-means clustering
process, aiming to improve the convergence speed and the final clustering quality [3]. It
addresses the shortcomings of the standard K-means algorithm, which is sensitive to the

62

initial placement of centroids and can result in poor convergence or getting stuck in local
optima. The K-means++ algorithm can be employed as a data selection strategy to identify
the most representative and diverse samples from an unlabeled dataset. By adapting the
K-means++ algorithm to select samples for labeling, we can ensure that the chosen instances
cover a broad range of the feature space, allowing the model to learn from a more informative
and diverse set of examples. The K-Means++ algorithm works as follows:

1. Set the desired number of samples (k) to be selected for labeling.
2. Choose the first sample randomly from the pool of unlabeled data.

3. Calculate the distance between each remaining unlabeled sample and the selected sam-
ple(s).

4. Select the next sample from the pool with a probability proportional to the square of its
distance from the nearest selected sample. This step ensures that samples farther away
from the already selected samples are more likely to be chosen, promoting diversity in
the selected set.

5. Repeat steps 3 and 4 until k samples are selected for labeling.
6. Request the oracle to label the selected samples, and add them to the labeled dataset.
7. Train or fine-tune the model on the updated labeled dataset.

8. Repeat the process iteratively until a stopping criterion is met, such as a maximum
number of iterations or a desired performance threshold.

When using this algorithm, all the points are selected right from the start (and order
in selection by the algorithm is kept). When the user queries for a batch of size b, the
algorithm returns the next b elements that it has chosen from the K-Means++ initialization
algorithm.

C.3 BADGE

BADGE (Batch Active learning by Diverse Gradient Embeddings) [4] is designed for selecting
a diverse and informative batch of samples from an unlabeled dataset to enhance the learning
process of a model. BADGE utilizes the hallucinated gradient space, or the gradient of the
loss function with respect to the final output layer,

0

") = G0

L((z,9),9)

where (-1 are the model parameters of the final layer and ¢ is the pseudo-prediction from
the model based on the model output (for example, in classification problems, g would be the
one-hot vector representing the class prediction given by the model output). The BADGE
algorithm works as follows:

63

1. Train the model on the current labeled dataset.

2. Calculate the loss gradients for each unlabeled sample with respect to the model’s
parameters. These gradients represent how much the model’s parameters would change
if the sample were included in the training set.

3. Embed the high-dimensional gradients of each sample into a lower-dimensional space
using dimensionality reduction techniques, such as PCA (Principal Component Anal-
ysis) or t-SNE (t-Distributed Stochastic Neighbor Embedding). This step reduces the
computational complexity of the algorithm while preserving the essential structure of
the gradients.

4. Apply a diversity-promoting algorithm, such as K-means++, on the lower-dimensional
gradient embeddings to select a batch of samples that are both diverse and informative.
This step ensures that the chosen samples cover a wide range of gradient directions,
which is crucial for improving the model’s generalization capabilities.

5. Request the oracle to label the selected samples and add them to the labeled dataset.
6. Train or fine-tune the model on the updated labeled dataset.

7. Repeat the process iteratively until a stopping criterion is met, such as a maximum
number of iterations or a desired performance threshold.

Theoretically, BADGE is able to provide a balance between selecting points which are
diverse and selecting points which the model is uncertain about. Unlike in the original paper,
for experiments involving BADGE, we do not provide the algorithm with an initial training
set.

C.4 MLMOC

The Most Likely Model Output Change (MLMOC) algorithm [42] focuses on selecting sam-
ples with the highest expected change in model output. This approach aims to reduce the
overall uncertainty in the model’s predictions by targeting samples that are most likely to
influence the model’s decisions. The MLMOC algorithm is particularly useful when dealing
with complex learning tasks, as it can efficiently select informative samples that lead to im-
proved model performance with fewer labeled instances. The MLMOC algorithm works as
follows:

1. Train the model on the current labeled dataset.
2. For each unlabeled sample in the dataset, compute the model’s output (e.g., class

probabilities for classification tasks) and identify the model’s current prediction (i.e.,
the class with the highest probability).

64

3. Estimate the change in model output for each sample by perturbing the model’s pa-
rameters, simulating the effect of incorporating the sample into the training set. This
step can be done using various techniques, such as the gradient of the model’s output
with respect to its parameters, or using a surrogate model to approximate the model’s
behavior.

4. Calculate the expected change in model output for each sample by integrating over
all possible true labels, weighted by the model’s uncertainty about the true label.
This step can be achieved using the model’s class probabilities or other measures of
uncertainty.

5. Select the sample(s) with the highest expected change in model output for expert
labeling.

6. Request the oracle to label the selected samples and add them to the labeled dataset.
7. Train or fine-tune the model on the updated labeled dataset.

8. Repeat the process iteratively until a stopping criterion is met, such as a maximum
number of iterations or a desired performance threshold.

The main advantage of the MLMOC active learning algorithm is its ability to identify
informative samples that are most likely to influence the model’s decisions, leading to im-
proved model performance with fewer labeled instances. By focusing on the expected change
in model output, the MLMOC algorithm reduces the overall uncertainty in the model’s pre-
dictions, resulting in more accurate and confident decisions.

65

Appendix D

Reported Metrics

To quantify the model performances, we use either the test mean-squared error (MSE)
for regression problems, or the test accuracy for classification problems. To quantify the
initialization robustness of the models, we use output variance for regression tasks and output
entropy for classification tasks.

D.1 Output Variance

Output variance is used as an initialization-robustness measure for regression tasks, and is
the empirical variance of output of trained neural networks with respect to the different
model initializations. In our experiments, we report the 90" percentile output variance,
which is defined as the 90th percentile output variance test data. The 90" percentile is used
instead of the 100'" percentile (i.e. the maximum output variance) since using the 100"
percentile tends to focus on some outlier rather than reflecting the output variance of the
majority of the test data. We also chose to report the 90*" percentile value instead of the
average value since it is able to indicate the output variance of the worst-case inputs and is
therefore a better measure of initialization robustness on the overall space.

D.2 Output Entropy

Output entropy is used as an initialization-robustness measure for classification tasks, and is
defined as the empirical entropy of the predicted label. For a neural network, the predicted
label for some input z is given by § = arg max; f(z;6);. Given multiple trained models with
different parameters 6, ..., 0, we will obtain different predictions ¥1,...,9;. The output
entropy is then defined as — ¢, v;logv; where v; = % . 2521 1j,—;. A lower output entropy
corresponds to models whose predictions are more consistent with each other.

66

Appendix E

Computation of the NTK

E.1 Theoretical NTK using Neural-Tangents

The theoretical NTK is computed using the Neural-Tangents package [48]. Since different
packages are used for AL and for model training, the trained network will not have exactly
the same parameters as those used to compute the theoretical NTK. Regardless, we still find
that the kernels themselves shows enough agreement and are still useful for predicting the
network dynamics.

The main disadvantage of using the theoretical NTK is that it can not be computed for
all model architectures. In particular, Neural-Tangents only supports AveragePooling layers
but not MaxPooling layers. It also does not support BatchNorm layers or Dropout layers.
For this reason, experiments involving the theoretical NTK are restricted to use the MLP
networks. Also, we do not use the theoretical NTK for MLMOC, which uses the empirical
kernel.

E.2 Empirical NTK Using PyTorch

An alternative method of computing the NTK is to do so empirically by taking the in-
ner product of the model output gradient Vyf (z, X') with respect to its parameters. This
requires us to compute the Jacobian Vy f(z, X'), which is extremely expensive in terms of re-
quired memory and cost for performing the matrix multiplication. In particular, for a model
with p parameters and o outputs, computing the NTK on an input of size n requires O(npo)
space and O(n?po) running time for the matrix multiplication alone. In order to perform this
operation efficiently, we follow the method as used in PyTorch’s FuncTools tutorial'. Note
that FuncTools is not compatible with all neural network components (e.g. BatchNorm), and
therefore in our experiments we do not use those components in the models. Even though
Neural-Tangents is able to compute the empirical NTK as well, we chose to compute the
empirical NTK on PyTorch since the models and (most of) the model training are done on
PyTorch anyway.

!See https://pytorch.org/functorch/stable/notebooks/neural_tangent_kernels.html.

67

https://pytorch.org/functorch/stable/notebooks/neural_tangent_kernels.html

For classification instances where the model has multiple outputs, we also perform a
further approximation of only using the gradient which contributes to a single model output
(which is chosen at random). This is possible since the gradient inner product with respect
to each outputs are independent of each other and has the same value in the limit. This is
a similar trick which is also used by [42].

68

	Acknowledgement
	Abstract
	Introduction
	Problem Motivation
	Contributions

	Background
	Problem Setting
	Neural Active Learning
	Diversity-Based Algorithms
	Uncertainty-Based Algorithms
	Hybrid Strategies
	Gaps in Literature

	Gaussian Process
	Full-Rank GP
	Sparse GP
	AL for GP

	Neural Tangent Kernel
	Network Parameterization
	Training Dynamics
	Approximating NN using GP Posterior
	Applications
	Limitations

	Theory
	Output Variance of the Trained Network
	Approximation Quality
	Dual Activations
	Network Parameterization
	Relationship between K and
	ReLU Dual Activation Function
	Bounding K with
	Bounding with
	Ratio between K and
	Bounding the Difference Between NN and NTKGP

	Connection with Generalization Error
	AL Criterion
	Bounding the Ratio Between EV,NN and EV,NTKGP
	Incremental Computation of 2NTKGP
	Sparse GP Approximation of NTKGP
	Approximating Incremental Change in NTKGP
	Other Criterions

	AL Algorithm

	Experiments
	Points Chosen by EV-GP
	Correlation Between 2NTKGP and Output Variance
	Experiments on Regression Tasks
	Sequential Data Selection
	Batched Data Selection
	Evidence for Theorem 3.4
	Sparse Approximations
	Other Criteria

	Experiments on Classification Tasks
	Performance Comparison
	Effect of Batch Size
	Effect of Network Width

	Conclusion
	Appendix
	Experimental Setup
	Regression Experiments
	Classification Experiments

	Datasets
	MNIST
	EMNIST
	SVHN
	CIFAR-100

	Active Learning Baselines
	Random
	K-Means++
	BADGE
	MLMOC

	Reported Metrics
	Output Variance
	Output Entropy

	Computation of the NTK
	Theoretical NTK using Neural-Tangents
	Empirical NTK Using PyTorch

